These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37231)

  • 61. Role of pipecolic acid in the biosynthesis of lysine in Rhodotorula glutinis.
    Kinzel JJ; Bhattacharjee JK
    J Bacteriol; 1979 May; 138(2):410-7. PubMed ID: 571433
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Utilization of exogenous pyrimidines as a source of nitrogen by cells of the yeast Rhodotorula glutinis.
    Milstein OA; Bekker ML
    J Bacteriol; 1976 Jul; 127(1):1-6. PubMed ID: 945262
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Improvement of carotenoid-synthesizing yeast Rhodotorula rubra by chemical mutagenesis.
    Frengova GI; Simova ED; Beshkova DM
    Z Naturforsch C J Biosci; 2004; 59(1-2):99-103. PubMed ID: 15018061
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of endosulfan on plasma membrane function of the yeast Rhodotorula gracilis.
    Srivastava V; Misra PC
    Toxicol Lett; 1981 Mar; 7(6):475-80. PubMed ID: 7195616
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [The growth of Rhodotorula rubra yeasts and their synthesis of ergosterol on media with lovastatin].
    Baranova NA; Kreĭner VG; Egorov NS
    Antibiot Khimioter; 1996; 41(11):3-6. PubMed ID: 9214284
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Cultivation of carotene synthesizing yeasts in a continuous process].
    Vaskivniuk VT
    Mikrobiol Zh (1978); 1979; 41(3):284-6. PubMed ID: 573365
    [No Abstract]   [Full Text] [Related]  

  • 67. Production and partial characterization of β-1,3-glucanase obtained from Rhodotorula oryzicola.
    Santana ML; Maciel Paulo E; Bispo JA; de Sena AR; de Assis SA
    Prep Biochem Biotechnol; 2018 Feb; 48(2):165-171. PubMed ID: 29313463
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Study of the cell walls of yeasts Rhodotorulamv'nfluence of the conditions of culture on the phosphatases of Rh; rubra (author's transl)].
    Touimi-Benjelloun A; Bonaly R
    Biochim Biophys Acta; 1975 May; 392(1):39-50. PubMed ID: 804936
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phosphate concentration and transport in Ehrlich ascites tumor cells: effect of sodium.
    Bowen JW; Levinson C
    J Cell Physiol; 1982 Feb; 110(2):149-54. PubMed ID: 7068772
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dissimilation of aromatic compounds in Rhodotorula graminis: biochemical characterization of pleiotropically negative mutants.
    Durham DR; McNamee CG; Stewart DB
    J Bacteriol; 1984 Nov; 160(2):771-7. PubMed ID: 6542098
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Beta-carotene-rich carotenoid-protein preparation and exopolysaccharide production by Rhodotorula rubra GED8 grown with a yogurt starter culture.
    Frengova GI; Simova ED; Beshkova DM
    Z Naturforsch C J Biosci; 2006; 61(7-8):571-7. PubMed ID: 16989319
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanism of spermine action on plasma membrane sugar transport function of yeast Rhodotorula glutinis.
    Kumar P; Misra PC
    Indian J Exp Biol; 1988 Nov; 26(11):824-7. PubMed ID: 3248839
    [No Abstract]   [Full Text] [Related]  

  • 73. Microbial transformation of rubeomycin A to rubeomycin B.
    Ogawa Y; Mizukoshi S; Mori H
    J Antibiot (Tokyo); 1983 Nov; 36(11):1561-3. PubMed ID: 6686224
    [No Abstract]   [Full Text] [Related]  

  • 74. [Thermal resistance of Candida tropicalis and Rhodotorula rubra in orange juice].
    Barreiro JA; Vidaurreta JL; Boscán LA; Mendoza S; Saiz E
    Arch Latinoam Nutr; 1981 Sep; 31(3):463-70. PubMed ID: 7201301
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Some biochemical properties of fungi from genera Rhodotorula and Trichosporon isolated from Sulejów Reservoir bath water.
    Wójcik A; Rózga A; Kurnatowski P
    Wiad Parazytol; 2004; 50(2):151-6. PubMed ID: 16859018
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phosphate depletion in opossum kidney cells: apical but not basolateral or transepithelial adaptions of Pi transport.
    Barac-Nieto M; Alfred M; Spitzer A
    Exp Nephrol; 2001; 9(4):258-64. PubMed ID: 11423725
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Improvement of selenium enrichment in
    Wang T; Lou X; Zhang G; Dang Y
    Bioengineered; 2019 Dec; 10(1):335-344. PubMed ID: 31322471
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The biochemical characterization of two phosphate transport systems in Phytomonas serpens.
    Vieira-Bernardo R; Gomes-Vieira AL; Carvalho-Kelly LF; Russo-Abrahão T; Meyer-Fernandes JR
    Exp Parasitol; 2017 Feb; 173():1-8. PubMed ID: 27956087
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microbial models of mammalian metabolism: stereospecificity of ketone reduction with pentoxifylline.
    Davis PJ; Yang SK; Smith RV
    Xenobiotica; 1985 Dec; 15(12):1001-10. PubMed ID: 3911603
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia.
    Tenenhouse HS; Scriver CR
    J Clin Invest; 1975 Mar; 55(3):644-54. PubMed ID: 1117070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.