BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37232123)

  • 1. A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis.
    Li Y; Zhang M; Zhang Y; Niu X; Liu Z; Yue T; Zhang W
    J Mater Chem B; 2023 Jul; 11(27):6319-6334. PubMed ID: 37232123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective membrane wrapping on differently sized nanoparticles regulated by clathrin assembly: A computational model.
    Li Y; Zhang M; Niu X; Yue T
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112467. PubMed ID: 35366575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics.
    Li Y; Yue T; Yang K; Zhang X
    Biomaterials; 2012 Jun; 33(19):4965-73. PubMed ID: 22483010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter.
    Shen Z; Ye H; Yi X; Li Y
    ACS Nano; 2019 Jan; 13(1):215-228. PubMed ID: 30557506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entry modes of ellipsoidal nanoparticles on a membrane during clathrin-mediated endocytosis.
    Deng H; Dutta P; Liu J
    Soft Matter; 2019 Jun; 15(25):5128-5137. PubMed ID: 31190048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptor-Mediated Endocytosis of Nanoparticles: Roles of Shapes, Orientations, and Rotations of Nanoparticles.
    Tang H; Zhang H; Ye H; Zheng Y
    J Phys Chem B; 2018 Jan; 122(1):171-180. PubMed ID: 29199830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms.
    Agarwal R; Singh V; Jurney P; Shi L; Sreenivasan SV; Roy K
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17247-52. PubMed ID: 24101456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting lipid vesicles from plasma membranes via self-assembly of clathrin-inspired scaffolding nanoparticles.
    Li Y; Zhang X; Lin J; Li R; Yue T
    Colloids Surf B Biointerfaces; 2019 Apr; 176():239-248. PubMed ID: 30623811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.
    Phuc LTM; Taniguchi A
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic simulations of nanoparticle internalization through transferrin receptor dependent clathrin-mediated endocytosis.
    Deng H; Dutta P; Liu J
    Biochim Biophys Acta Gen Subj; 2018 Sep; 1862(9):2104-2111. PubMed ID: 29959983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis.
    Banerjee A; Berezhkovskii A; Nossal R
    Phys Biol; 2016 Feb; 13(1):016005. PubMed ID: 26871680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.
    Chakraborty A; Jana NR
    J Phys Chem Lett; 2015 Sep; 6(18):3688-97. PubMed ID: 26722743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis.
    Qaddoumi MG; Gukasyan HJ; Davda J; Labhasetwar V; Kim KJ; Lee VH
    Mol Vis; 2003 Oct; 9():559-68. PubMed ID: 14566223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Coupling Nanoparticle Stiffness with Shape for Endocytosis: From Rodlike Penetration to Wormlike Wriggling.
    Liu N; Becton M; Zhang L; Wang X
    J Phys Chem B; 2020 Dec; 124(49):11145-11156. PubMed ID: 33226245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles Internalization through HIP-55-Dependent Clathrin Endocytosis Pathway.
    Guan K; Liu K; Jiang Y; Bian J; Gao Y; Dong E; Li Z
    Nano Lett; 2023 Dec; 23(24):11477-11484. PubMed ID: 38084909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular Uptake Pathways of Nanoparticles: Process of Endocytosis and Factors Affecting their Fate.
    Varma S; Dey S; Palanisamy D
    Curr Pharm Biotechnol; 2022; 23(5):679-706. PubMed ID: 34264182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape and orientation matter for the cellular uptake of nonspherical particles.
    Dasgupta S; Auth T; Gompper G
    Nano Lett; 2014 Feb; 14(2):687-93. PubMed ID: 24383757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells.
    Langston Suen WL; Chau Y
    J Pharm Pharmacol; 2014 Apr; 66(4):564-73. PubMed ID: 24635558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.