BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37232225)

  • 1. Integrative Transcriptomic Analyses of Hippocampal-Entorhinal System Subfields Identify Key Regulators in Alzheimer's Disease.
    Luo D; Li J; Liu H; Wang J; Xia Y; Qiu W; Wang N; Wang X; Wang X; Ma C; Ge W
    Adv Sci (Weinh); 2023 Aug; 10(22):e2300876. PubMed ID: 37232225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic and Transcriptomic Analyses Reveal Pathological Changes in the Entorhinal Cortex Region that Correlate Well with Dysregulation of Ion Transport in Patients with Alzheimer's Disease.
    Jia Y; Wang X; Chen Y; Qiu W; Ge W; Ma C
    Mol Neurobiol; 2021 Aug; 58(8):4007-4027. PubMed ID: 33904022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatics analysis of differentially expressed genes and identification of an miRNA-mRNA network associated with entorhinal cortex and hippocampus in Alzheimer's disease.
    Li H; Zou L; Shi J; Han X
    Hereditas; 2021 Jul; 158(1):25. PubMed ID: 34243818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippocampal transcriptome-wide association study and neurobiological pathway analysis for Alzheimer's disease.
    Liu N; Xu J; Liu H; Zhang S; Li M; Zhou Y; Qin W; Li MJ; Yu C;
    PLoS Genet; 2021 Feb; 17(2):e1009363. PubMed ID: 33630843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer's disease.
    Mikkonen M; Alafuzoff I; Tapiola T; Soininen H; Miettinen R
    Neuroscience; 1999; 92(2):515-32. PubMed ID: 10408601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hippocampal subfield pathologic burden in Lewy body diseases vs. Alzheimer's disease.
    Coughlin DG; Ittyerah R; Peterson C; Phillips JS; Miller S; Rascovsky K; Weintraub D; Siderowf AD; Duda JE; Hurtig HI; Wolk DA; McMillan CT; Yushkevich PA; Grossman M; Lee EB; Trojanowski JQ; Irwin DJ
    Neuropathol Appl Neurobiol; 2020 Dec; 46(7):707-721. PubMed ID: 32892355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer's disease and the role of glial cells.
    Gao Y; Liu J; Wang J; Liu Y; Zeng LH; Ge W; Ma C
    Brain Pathol; 2022 Jul; 32(4):e13047. PubMed ID: 35016256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell sequencing of entorhinal cortex reveals widespread disruption of neuropeptide networks in Alzheimer's disease.
    Li M; Larsen PA
    Alzheimers Dement; 2023 Aug; 19(8):3575-3592. PubMed ID: 36825405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TDP-43 and tau concurrence in the entorhinal subfields in primary age-related tauopathy and preclinical Alzheimer's disease.
    Llamas-Rodríguez J; Oltmer J; Marshall M; Champion S; Frosch MP; Augustinack JC
    Brain Pathol; 2023 Jul; 33(4):e13159. PubMed ID: 37037195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the intercellular communication disruption and key pathways in Alzheimer's disease: an integrative study of single-nucleus transcriptomes and genetic association.
    Liu A; Fernandes BS; Citu C; Zhao Z
    Alzheimers Res Ther; 2024 Jan; 16(1):3. PubMed ID: 38167548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Altered Molecular Pathways in the Entorhinal Cortex of Alzheimer's Disease Patients and In Silico Prediction of Potential Repurposable Drugs.
    Fagone P; Mangano K; Martino G; Quattropani MC; Pennisi M; Bella R; Fisicaro F; Nicoletti F; Petralia MC
    Genes (Basel); 2022 Apr; 13(4):. PubMed ID: 35456509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Bioinformatic Analysis of the Dysregulated Genes and MicroRNAs in Entorhinal Cortex, Hippocampus, and Blood for Alzheimer's Disease.
    Pang X; Zhao Y; Wang J; Zhou Q; Xu L; Kang D; Liu AL; Du GH
    Biomed Res Int; 2017; 2017():9084507. PubMed ID: 29359159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T2 Relaxometry and Diffusion Tensor Indices of the Hippocampus and Entorhinal Cortex Improve Sensitivity and Specificity of MRI to Detect Amnestic Mild Cognitive Impairment and Alzheimer's Disease Dementia.
    Knight MJ; Wearn A; Coulthard E; Kauppinen RA
    J Magn Reson Imaging; 2019 Feb; 49(2):445-455. PubMed ID: 30209854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing individual variability of the entorhinal subfields in health and disease.
    Oltmer J; Greve DN; Cerri S; Slepneva N; Llamas-Rodríguez J; Iglesias JE; Van Leemput K; Champion SN; Frosch MP; Augustinack JC
    J Comp Neurol; 2023 Dec; 531(18):2062-2079. PubMed ID: 37700618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex-Stratified Single-Cell RNA-Seq Analysis Identifies Sex-Specific and Cell Type-Specific Transcriptional Responses in Alzheimer's Disease Across Two Brain Regions.
    Belonwu SA; Li Y; Bunis D; Rao AA; Solsberg CW; Tang A; Fragiadakis GK; Dubal DB; Oskotsky T; Sirota M
    Mol Neurobiol; 2022 Jan; 59(1):276-293. PubMed ID: 34669146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes.
    van der Meer D; Rokicki J; Kaufmann T; Córdova-Palomera A; Moberget T; Alnæs D; Bettella F; Frei O; Doan NT; Sønderby IE; Smeland OB; Agartz I; Bertolino A; Bralten J; Brandt CL; Buitelaar JK; Djurovic S; van Donkelaar M; Dørum ES; Espeseth T; Faraone SV; Fernández G; Fisher SE; Franke B; Haatveit B; Hartman CA; Hoekstra PJ; Håberg AK; Jönsson EG; Kolskår KK; Le Hellard S; Lund MJ; Lundervold AJ; Lundervold A; Melle I; Monereo Sánchez J; Norbom LC; Nordvik JE; Nyberg L; Oosterlaan J; Papalino M; Papassotiropoulos A; Pergola G; de Quervain DJF; Richard G; Sanders AM; Selvaggi P; Shumskaya E; Steen VM; Tønnesen S; Ulrichsen KM; Zwiers MP; Andreassen OA; Westlye LT; ;
    Mol Psychiatry; 2020 Nov; 25(11):3053-3065. PubMed ID: 30279459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ABCA7 risk variant in healthy older African Americans is associated with a functionally isolated entorhinal cortex mediating deficient generalization of prior discrimination training.
    Sinha N; Reagh ZM; Tustison NJ; Berg CN; Shaw A; Myers CE; Hill D; Yassa MA; Gluck MA
    Hippocampus; 2019 Jun; 29(6):527-538. PubMed ID: 30318785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hippocampal subfield volumes at 7T in early Alzheimer's disease and normal aging.
    Wisse LE; Biessels GJ; Heringa SM; Kuijf HJ; Koek DH; Luijten PR; Geerlings MI;
    Neurobiol Aging; 2014 Sep; 35(9):2039-45. PubMed ID: 24684788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated identification of key genes and pathways in Alzheimer's disease via comprehensive bioinformatical analyses.
    Yan T; Ding F; Zhao Y
    Hereditas; 2019; 156():25. PubMed ID: 31346329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell analysis reveals transcriptomic reprogramming in aging primate entorhinal cortex and the relevance with Alzheimer's disease.
    Li ML; Wu SH; Song B; Yang J; Fan LY; Yang Y; Wang YC; Yang JH; Xu Y
    Aging Cell; 2022 Nov; 21(11):e13723. PubMed ID: 36165462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.