BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 37232225)

  • 21. Integrated identification of key genes and pathways in Alzheimer's disease via comprehensive bioinformatical analyses.
    Yan T; Ding F; Zhao Y
    Hereditas; 2019; 156():25. PubMed ID: 31346329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-cell analysis reveals transcriptomic reprogramming in aging primate entorhinal cortex and the relevance with Alzheimer's disease.
    Li ML; Wu SH; Song B; Yang J; Fan LY; Yang Y; Wang YC; Yang JH; Xu Y
    Aging Cell; 2022 Nov; 21(11):e13723. PubMed ID: 36165462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decoding the Role of Astrocytes in the Entorhinal Cortex in Alzheimer's Disease Using High-Dimensional Single-Nucleus RNA Sequencing Data and Next-Generation Knowledge Discovery Methodologies: Focus on Drugs and Natural Product Remedies for Dementia.
    Pushparaj PN; Kalamegam G; Wali Sait KH; Rasool M
    Front Pharmacol; 2021; 12():720170. PubMed ID: 35295737
    [No Abstract]   [Full Text] [Related]  

  • 24. Structural Alteration of Medial Temporal Lobe Subfield in the Amnestic Mild Cognitive Impairment Stage of Alzheimer's Disease.
    He P; Qu H; Cai M; Liu W; Gu X; Ma Q
    Neural Plast; 2022; 2022():8461235. PubMed ID: 35111220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-Platform Synaptic Network Analysis of Human Entorhinal Cortex Identifies TWF2 as a Modulator of Dendritic Spine Length.
    Walker CK; Greathouse KM; Tuscher JJ; Dammer EB; Weber AJ; Liu E; Curtis KA; Boros BD; Freeman CD; Seo JV; Ramdas R; Hurst C; Duong DM; Gearing M; Murchison CF; Day JJ; Seyfried NT; Herskowitz JH
    J Neurosci; 2023 May; 43(20):3764-3785. PubMed ID: 37055180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrative genomics approach identifies conserved transcriptomic networks in Alzheimer's disease.
    Morabito S; Miyoshi E; Michael N; Swarup V
    Hum Mol Genet; 2020 Oct; 29(17):2899-2919. PubMed ID: 32803238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. APOE-Sensitive Cholinergic Sprouting Compensates for Hippocampal Dysfunctions Due to Reduced Entorhinal Input.
    Bott JB; Héraud C; Cosquer B; Herbeaux K; Aubert J; Sartori M; Goutagny R; Mathis C
    J Neurosci; 2016 Oct; 36(40):10472-10486. PubMed ID: 27707979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regional differences in Alzheimer's disease pathology confound behavioural rescue after amyloid-β attenuation.
    Morrone CD; Bazzigaluppi P; Beckett TL; Hill ME; Koletar MM; Stefanovic B; McLaurin J
    Brain; 2020 Jan; 143(1):359-373. PubMed ID: 31782760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease.
    Mueller SG; Schuff N; Yaffe K; Madison C; Miller B; Weiner MW
    Hum Brain Mapp; 2010 Sep; 31(9):1339-47. PubMed ID: 20839293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of dopamine D2 receptors varies along the rostrocaudal axis of the hippocampal complex in Alzheimer's disease.
    Ryoo HL; Joyce JN
    J Comp Neurol; 1994 Oct; 348(1):94-110. PubMed ID: 7814686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polygenic score for Alzheimer's disease identifies differential atrophy in hippocampal subfield volumes.
    Kannappan B; Gunasekaran TI; Te Nijenhuis J; Gopal M; Velusami D; Kothandan G; Lee KH;
    PLoS One; 2022; 17(7):e0270795. PubMed ID: 35830443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trajectories of the Hippocampal Subfields Atrophy in the Alzheimer's Disease: A Structural Imaging Study.
    Zhao W; Wang X; Yin C; He M; Li S; Han Y
    Front Neuroinform; 2019; 13():13. PubMed ID: 30983985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cholinergic plasticity in hippocampus of individuals with mild cognitive impairment: correlation with Alzheimer's neuropathology.
    Ikonomovic MD; Mufson EJ; Wuu J; Cochran EJ; Bennett DA; DeKosky ST
    J Alzheimers Dis; 2003 Feb; 5(1):39-48. PubMed ID: 12590165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative and histologically validated measures of the entorhinal subfields in
    Oltmer J; Slepneva N; Llamas Rodriguez J; Greve DN; Williams EM; Wang R; Champion SN; Lang-Orsini M; Nestor K; Fernandez-Ros N; Fischl B; Frosch MP; Magnain C; van der Kouwe AJW; Augustinack JC
    Brain Commun; 2022; 4(3):fcac074. PubMed ID: 35620167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells.
    Franjic D; Skarica M; Ma S; Arellano JI; Tebbenkamp ATN; Choi J; Xu C; Li Q; Morozov YM; Andrijevic D; Vrselja Z; Spajic A; Santpere G; Li M; Zhang S; Liu Y; Spurrier J; Zhang L; Gudelj I; Rapan L; Takahashi H; Huttner A; Fan R; Strittmatter SM; Sousa AMM; Rakic P; Sestan N
    Neuron; 2022 Feb; 110(3):452-469.e14. PubMed ID: 34798047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative estimations of the entorhinal cortex in Alzheimer's disease.
    Artacho-Pérula E; Insausti R
    Anal Quant Cytol Histol; 2007 Feb; 29(1):1-16. PubMed ID: 17375870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A quantitative autoradiographic study of [3H]cAMP binding to cytosolic and particulate protein kinase A in post-mortem brain staged for Alzheimer's disease neurofibrillary changes and amyloid deposits.
    Bonkale WL; Cowburn RF; Ohm TG; Bogdanovic N; Fastbom J
    Brain Res; 1999 Feb; 818(2):383-96. PubMed ID: 10082824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease.
    Devanand DP; Pradhaban G; Liu X; Khandji A; De Santi S; Segal S; Rusinek H; Pelton GH; Honig LS; Mayeux R; Stern Y; Tabert MH; de Leon MJ
    Neurology; 2007 Mar; 68(11):828-36. PubMed ID: 17353470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atrophy of hippocampal subfields and adjacent extrahippocampal structures in dementia with Lewy bodies and Alzheimer's disease.
    Delli Pizzi S; Franciotti R; Bubbico G; Thomas A; Onofrj M; Bonanni L
    Neurobiol Aging; 2016 Apr; 40():103-109. PubMed ID: 26973109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of stimulatory effect of guanosine triphosphate on [(35)S]GTPgammaS binding correlates with Alzheimer's disease neurofibrillary pathology in entorhinal cortex and CA1 hippocampal subfield.
    García-Jiménez A; Cowburn RF; Ohm TG; Lasn H; Winblad B; Bogdanovic N; Fastbom J
    J Neurosci Res; 2002 Feb; 67(3):388-98. PubMed ID: 11813244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.