These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 37232375)
1. ProgCAE: a deep learning-based method that integrates multi-omics data to predict cancer subtypes. Liu Q; Song K Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37232375 [TBL] [Abstract][Full Text] [Related]
2. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma. Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824 [TBL] [Abstract][Full Text] [Related]
3. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data. Zhao J; Zhao B; Song X; Lyu C; Chen W; Xiong Y; Wei DQ Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702755 [TBL] [Abstract][Full Text] [Related]
4. A denoised multi-omics integration framework for cancer subtype classification and survival prediction. Pang J; Liang B; Ding R; Yan Q; Chen R; Xu J Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594302 [TBL] [Abstract][Full Text] [Related]
5. Classifying breast cancer subtypes on multi-omics data via sparse canonical correlation analysis and deep learning. Huang Y; Zeng P; Zhong C BMC Bioinformatics; 2024 Mar; 25(1):132. PubMed ID: 38539064 [TBL] [Abstract][Full Text] [Related]
6. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping. Zhu S; Wang W; Fang W; Cui M Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589 [TBL] [Abstract][Full Text] [Related]
7. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data. Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649 [TBL] [Abstract][Full Text] [Related]
8. MMDAE-HGSOC: A novel method for high-grade serous ovarian cancer molecular subtypes classification based on multi-modal deep autoencoder. Wang HQ; Li HL; Han JL; Feng ZP; Deng HX; Han X Comput Biol Chem; 2023 Aug; 105():107906. PubMed ID: 37336028 [TBL] [Abstract][Full Text] [Related]
9. Cancer subtyping with heterogeneous multi-omics data via hierarchical multi-kernel learning. Wei Y; Li L; Zhao X; Yang H; Sa J; Cao H; Cui Y Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36433785 [TBL] [Abstract][Full Text] [Related]
10. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data. Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197 [TBL] [Abstract][Full Text] [Related]
11. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification. Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884 [TBL] [Abstract][Full Text] [Related]
12. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895 [TBL] [Abstract][Full Text] [Related]
13. NNBGWO-BRCA marker: Neural Network and binary grey wolf optimization based Breast cancer biomarker discovery framework using multi-omics dataset. Li M; Cai Y; Zhang M; Deng S; Wang L Comput Methods Programs Biomed; 2024 Sep; 254():108291. PubMed ID: 38909399 [TBL] [Abstract][Full Text] [Related]
14. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data. Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856 [TBL] [Abstract][Full Text] [Related]
15. Subtype-MGTP: a cancer subtype identification framework based on multi-omics translation. Xie M; Kuang Y; Song M; Bao E Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38857453 [TBL] [Abstract][Full Text] [Related]
16. A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks. Wang J; Liao N; Du X; Chen Q; Wei B BMC Genomics; 2024 Jan; 25(1):86. PubMed ID: 38254021 [TBL] [Abstract][Full Text] [Related]
17. Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping. Ge S; Liu J; Cheng Y; Meng X; Wang X Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36445207 [TBL] [Abstract][Full Text] [Related]
18. Multi-omics integration method based on attention deep learning network for biomedical data classification. Gong P; Cheng L; Zhang Z; Meng A; Li E; Chen J; Zhang L Comput Methods Programs Biomed; 2023 Apr; 231():107377. PubMed ID: 36739624 [TBL] [Abstract][Full Text] [Related]
19. Deep-Learning Algorithm and Concomitant Biomarker Identification for NSCLC Prediction Using Multi-Omics Data Integration. Park MK; Lim JM; Jeong J; Jang Y; Lee JW; Lee JC; Kim H; Koh E; Hwang SJ; Kim HG; Kim KC Biomolecules; 2022 Dec; 12(12):. PubMed ID: 36551266 [TBL] [Abstract][Full Text] [Related]
20. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping. Cai Y; Wang S Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]