BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 37232400)

  • 1. Genomics and phenomics enabled prebreeding improved early-season chilling tolerance in Sorghum.
    Marla S; Felderhoff T; Hayes C; Perumal R; Wang X; Poland J; Morris GP
    G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37232400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Architecture of Chilling Tolerance in Sorghum Dissected with a Nested Association Mapping Population.
    Marla SR; Burow G; Chopra R; Hayes C; Olatoye MO; Felderhoff T; Hu Z; Raymundo R; Perumal R; Morris GP
    G3 (Bethesda); 2019 Dec; 9(12):4045-4057. PubMed ID: 31611346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel QTL for chilling tolerance at germination and early seedling stages in sorghum.
    La Borde N; Rajewski J; Dweikat I
    Front Genet; 2023; 14():1129460. PubMed ID: 37007950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array.
    Bekele WA; Wieckhorst S; Friedt W; Snowdon RJ
    Plant Biotechnol J; 2013 Dec; 11(9):1112-25. PubMed ID: 23919585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Genomic Regions Associated with Seedling Frost Tolerance in Sorghum.
    Borde N; Dweikat I
    Genes (Basel); 2023 Nov; 14(12):. PubMed ID: 38136939
    [No Abstract]   [Full Text] [Related]  

  • 6. Crop modeling defines opportunities and challenges for drought escape, water capture, and yield increase using chilling-tolerant sorghum.
    Raymundo R; Sexton-Bowser S; Ciampitti IA; Morris GP
    Plant Direct; 2021 Sep; 5(9):e349. PubMed ID: 34532633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches.
    Prasad VBR; Govindaraj M; Djanaguiraman M; Djalovic I; Shailani A; Rawat N; Singla-Pareek SL; Pareek A; Prasad PVV
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench].
    Nagaraja Reddy R; Madhusudhana R; Murali Mohan S; Chakravarthi DV; Mehtre SP; Seetharama N; Patil JV
    Theor Appl Genet; 2013 Aug; 126(8):1921-39. PubMed ID: 23649648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QTL analysis of early-season cold tolerance in sorghum.
    Knoll J; Gunaratna N; Ejeta G
    Theor Appl Genet; 2008 Feb; 116(4):577-87. PubMed ID: 18097644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A Genomic Model for Panicoid Grasses.
    Cuevas HE; Zhou C; Tang H; Khadke PP; Das S; Lin YR; Ge Z; Clemente T; Upadhyaya HD; Hash CT; Paterson AH
    Mol Biol Evol; 2016 Sep; 33(9):2417-28. PubMed ID: 27335143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population.
    Luo Q; Zheng Q; Hu P; Liu L; Yang G; Li H; Li B; Li Z
    Theor Appl Genet; 2021 Jan; 134(1):171-189. PubMed ID: 32995899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KASP: a high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance.
    Dipta B; Sood S; Mangal V; Bhardwaj V; Thakur AK; Kumar V; Singh B
    Mol Biol Rep; 2024 Apr; 51(1):508. PubMed ID: 38622474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops.
    Furbank RT; Jimenez-Berni JA; George-Jaeggli B; Potgieter AB; Deery DM
    New Phytol; 2019 Sep; 223(4):1714-1727. PubMed ID: 30937909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise colocalization of sorghum's major chilling tolerance locus with Tannin1 due to tight linkage drag rather than antagonistic pleiotropy.
    Schuh A; Felderhoff TJ; Marla S; Morris GP
    Theor Appl Genet; 2024 Feb; 137(2):42. PubMed ID: 38308687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorghum breeding in the genomic era: opportunities and challenges.
    Hao H; Li Z; Leng C; Lu C; Luo H; Liu Y; Wu X; Liu Z; Shang L; Jing HC
    Theor Appl Genet; 2021 Jul; 134(7):1899-1924. PubMed ID: 33655424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unravelling the genetic complexity of sorghum seedling development under low-temperature conditions.
    Bekele WA; Fiedler K; Shiringani A; Schnaubelt D; Windpassinger S; Uptmoor R; Friedt W; Snowdon RJ
    Plant Cell Environ; 2014 Mar; 37(3):707-23. PubMed ID: 24033406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association mapping of resistance to the sorghum aphid in Sorghum bicolor.
    Punnuri SM; Ayele AG; Harris-Shultz KR; Knoll JE; Coffin AW; Tadesse HK; Armstrong JS; Wiggins TK; Li H; Sattler S; Wallace JG
    Genomics; 2022 Jul; 114(4):110408. PubMed ID: 35716823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association mapping of germinability and seedling vigor in sorghum under controlled low-temperature conditions.
    Upadhyaya HD; Wang YH; Sastry DV; Dwivedi SL; Prasad PV; Burrell AM; Klein RR; Morris GP; Klein PE
    Genome; 2016 Feb; 59(2):137-45. PubMed ID: 26758024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural variation further increases resilience of sorghum bred for chronically drought-prone environments.
    Dong H; Birhan T; Abajebel N; Wakjira M; Mitiku T; Lemke C; Vadez V; Paterson AH; Bantte K
    J Exp Bot; 2022 Sep; 73(16):5730-5744. PubMed ID: 35605043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum.
    Moghimi N; Desai JS; Bheemanahalli R; Impa SM; Vennapusa AR; Sebela D; Perumal R; Doherty CJ; Jagadish SVK
    J Exp Bot; 2019 Jun; 70(12):3357-3371. PubMed ID: 30949711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.