BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37232537)

  • 1. AIomics: Exploring More of the Proteome Using Mass Spectral Libraries Extended by Artificial Intelligence.
    Geer LY; Lapin J; Slotta DJ; Mak TD; Stein SE
    J Proteome Res; 2023 Jul; 22(7):2246-2255. PubMed ID: 37232537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse and Random Decoy Methods for False Discovery Rate Estimation in High Mass Accuracy Peptide Spectral Library Searches.
    Zhang Z; Burke M; Mirokhin YA; Tchekhovskoi DV; Markey SP; Yu W; Chaerkady R; Hess S; Stein SE
    J Proteome Res; 2018 Feb; 17(2):846-857. PubMed ID: 29281288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semisupervised Machine Learning for Sensitive Open Modification Spectral Library Searching.
    Arab I; Fondrie WE; Laukens K; Bittremieux W
    J Proteome Res; 2023 Feb; 22(2):585-593. PubMed ID: 36688569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning.
    Gessulat S; Schmidt T; Zolg DP; Samaras P; Schnatbaum K; Zerweck J; Knaute T; Rechenberger J; Delanghe B; Huhmer A; Reimer U; Ehrlich HC; Aiche S; Kuster B; Wilhelm M
    Nat Methods; 2019 Jun; 16(6):509-518. PubMed ID: 31133760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive and Specific Spectral Library Searching with CompOmics Spectral Library Searching Tool and Percolator.
    Shiferaw GA; Gabriels R; Bouwmeester R; Van Den Bossche T; Vandermarliere E; Martens L; Volders PJ
    J Proteome Res; 2022 May; 21(5):1365-1370. PubMed ID: 35446579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of peptide mass spectral libraries with machine learning.
    Cox J
    Nat Biotechnol; 2023 Jan; 41(1):33-43. PubMed ID: 36008611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending the coverage of spectral libraries: a neighbor-based approach to predicting intensities of peptide fragmentation spectra.
    Ji C; Arnold RJ; Sokoloski KJ; Hardy RW; Tang H; Radivojac P
    Proteomics; 2013 Mar; 13(5):756-65. PubMed ID: 23303707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem mass spectrometry spectral libraries and library searching.
    Deutsch EW
    Methods Mol Biol; 2011; 696():225-32. PubMed ID: 21063950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using annotated peptide mass spectrum libraries for protein identification.
    Craig R; Cortens JC; Fenyo D; Beavis RC
    J Proteome Res; 2006 Aug; 5(8):1843-9. PubMed ID: 16889405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MS Ana: Improving Sensitivity in Peptide Identification with Spectral Library Search.
    Dorl S; Winkler S; Mechtler K; Dorfer V
    J Proteome Res; 2023 Feb; 22(2):462-470. PubMed ID: 36688604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput database search and large-scale negative polarity liquid chromatography-tandem mass spectrometry with ultraviolet photodissociation for complex proteomic samples.
    Madsen JA; Xu H; Robinson MR; Horton AP; Shaw JB; Giles DK; Kaoud TS; Dalby KN; Trent MS; Brodbelt JS
    Mol Cell Proteomics; 2013 Sep; 12(9):2604-14. PubMed ID: 23695934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating open modification spectral library searching on tensor core in high-dimensional space.
    Kang J; Xu W; Bittremieux W; Moshiri N; Rosing T
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37369033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrum-to-spectrum searching using a proteome-wide spectral library.
    Yen CY; Houel S; Ahn NG; Old WM
    Mol Cell Proteomics; 2011 Jul; 10(7):M111.007666. PubMed ID: 21532008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Merging Full-Spectrum and Fragment Ion Intensity Predictions from Deep Learning for High-Quality Spectral Libraries.
    Chan CMJ; Lam H
    J Proteome Res; 2023 Dec; 22(12):3692-3702. PubMed ID: 37910637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel spectral library workflow to enhance protein identifications.
    Li H; Zong NC; Liang X; Kim AK; Choi JH; Deng N; Zelaya I; Lam M; Duan H; Ping P
    J Proteomics; 2013 Apr; 81():173-84. PubMed ID: 23391412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Spectral Library and Protein Sequence Database Search Strategy for Bottom-Up and Top-Down Proteomic Data Analysis.
    Dai Y; Millikin RJ; Rolfs Z; Shortreed MR; Smith LM
    J Proteome Res; 2022 Nov; 21(11):2609-2618. PubMed ID: 36206157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral library searching in proteomics.
    Griss J
    Proteomics; 2016 Mar; 16(5):729-40. PubMed ID: 26616598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building and searching tandem mass spectral libraries for peptide identification.
    Lam H
    Mol Cell Proteomics; 2011 Dec; 10(12):R111.008565. PubMed ID: 21900153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of proteotypic peptide libraries for protein identification.
    Craig R; Cortens JP; Beavis RC
    Rapid Commun Mass Spectrom; 2005; 19(13):1844-50. PubMed ID: 15945033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of TripleTOF spectral simulation and library searching for confident localization of phosphorylation sites.
    Takai A; Tsubosaka T; Hirano Y; Hayakawa N; Tani F; Haapaniemi P; Suni V; Imanishi SY
    PLoS One; 2019; 14(12):e0225885. PubMed ID: 31790495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.