BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37232584)

  • 21. Interpenetrated Metal-Porphyrinic Framework for Enhanced Nonlinear Optical Limiting.
    Li DJ; Li QH; Wang ZR; Ma ZZ; Gu ZG; Zhang J
    J Am Chem Soc; 2021 Oct; 143(41):17162-17169. PubMed ID: 34543015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Giant and Multistage Nonlinear Optical Response in Porphyrin-Based Surface-Supported Metal-Organic Framework Nanofilms.
    Gu C; Zhang H; You P; Zhang Q; Luo G; Shen Q; Wang Z; Hu J
    Nano Lett; 2019 Dec; 19(12):9095-9101. PubMed ID: 31765163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stepwise Synthesis of Metal-Organic Frameworks.
    Bosch M; Yuan S; Rutledge W; Zhou HC
    Acc Chem Res; 2017 Apr; 50(4):857-865. PubMed ID: 28350434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bandgap Modulation in Zr-Based Metal-Organic Frameworks by Mixed-Linker Approach.
    Cedeno RM; Cedeno R; Gapol MA; Lerdwiriyanupap T; Impeng S; Flood A; Bureekaew S
    Inorg Chem; 2021 Jun; 60(12):8908-8916. PubMed ID: 34109787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oriented Assembly of 2D Metal-Pyridylporphyrinic Framework Films for Giant Nonlinear Optical Limiting.
    Li DJ; Li QH; Gu ZG; Zhang J
    Nano Lett; 2021 Dec; 21(23):10012-10018. PubMed ID: 34797085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural Variation and Switchable Nonlinear Optical Behavior of Metal-Organic Frameworks.
    Zhang L; Li H; He H; Yang Y; Cui Y; Qian G
    Small; 2021 Feb; 17(6):e2006649. PubMed ID: 33470526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Donor-Acceptor Heterostructure Metal-Organic Framework Crystals for Photonic Logic Computation.
    Liu XT; Wang K; Chang Z; Zhang YH; Xu J; Zhao YS; Bu XH
    Angew Chem Int Ed Engl; 2019 Sep; 58(39):13890-13896. PubMed ID: 31231920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noncentrosymmetric Lanthanide-Based MOF Materials Exhibiting Strong SHG Activity and NIR Luminescence of Er
    Runowski M; Marcinkowski D; Soler-Carracedo K; Gorczyński A; Ewert E; Woźny P; Martín IR
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3244-3252. PubMed ID: 36601726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Third-Order Nonlinear Optical Behavior of an Amide-Tricarboxylate Zinc(II) Metal-Organic Framework with Two-Fold 3D+3D Interpenetration.
    Abazari R; Yazdani E; Nadafan M; Kirillov AM; Gao J; Slawin AMZ; Carpenter-Warren CL
    Inorg Chem; 2021 Jul; 60(13):9700-9708. PubMed ID: 34120443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-organic frameworks for electronics: emerging second order nonlinear optical and dielectric materials.
    Mendiratta S; Lee CH; Usman M; Lu KL
    Sci Technol Adv Mater; 2015 Oct; 16(5):054204. PubMed ID: 27877833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear optical properties and optimization strategies of D-π-A type phenylamine derivatives in the near-infrared region.
    Wei J; Yang J; Li Y; Song Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121539. PubMed ID: 35777228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and photoluminescence tuning features of Mn(2+)- and Ln(3+)-activated Zn-based heterometal-organic frameworks (MOFs) with a single 5-methylisophthalic acid ligand.
    Bo QB; Wang HY; Wang DQ; Zhang ZW; Miao JL; Sun GX
    Inorg Chem; 2011 Oct; 50(20):10163-77. PubMed ID: 21923126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Application of gas chromatography separation based on metal-organic framework material as stationary phase].
    Tang W; Meng S; Xu M; Gu Z
    Se Pu; 2021 Jan; 39(1):57-68. PubMed ID: 34227359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclodextrin Metal-Organic Frameworks and Their Applications.
    Roy I; Stoddart JF
    Acc Chem Res; 2021 Mar; 54(6):1440-1453. PubMed ID: 33523626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropic Band-Edge Absorption of Millimeter-Sized Zn(3-ptz)
    Chi-Durán I; Fritz RA; Urzúa-Leiva R; Cárdenas-Jirón G; Singh DP; Herrera F
    ACS Omega; 2022 Jul; 7(28):24432-24437. PubMed ID: 35874204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Construction of Near-Infrared Absorption Donor-Acceptor Copolymers with and without Pt(II)-Incorporation toward Broadband Nonlinear Optical Materials.
    Sun J; Liu Z; Yan C; Sun X; Xie Z; Zhang G; Shao X; Zhang D; Zhou S
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2944-2951. PubMed ID: 31842544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Syntheses and structures of two novel fluorescent metal-organic frameworks generated from a tridentate donor-acceptor motif ligand.
    Zhao YJ; Ma JP; Fan J; Geng Y; Dong YB
    Acta Crystallogr C Struct Chem; 2020 Jun; 76(Pt 6):605-615. PubMed ID: 32499459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural Compromise Between Conflicted Spatial-Arrangements of Two Linkers in Metal-Organic Frameworks.
    Lee G; Kwon H; Lee S; Oh M
    Small Methods; 2023 Jun; 7(6):e2201586. PubMed ID: 36802140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.