These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37233091)
1. Digestive Characteristics of Zhang A; Li T; Yuan L; Tan M; Jiang D; Yan S Insects; 2023 May; 14(5):. PubMed ID: 37233091 [TBL] [Abstract][Full Text] [Related]
2. The high adaptability of Hyphantria cunea larvae to cinnamic acid involves in detoxification, antioxidation and gut microbiota response. Jiang D; Wu S; Tan M; Wang Q; Zheng L; Yan SC Pestic Biochem Physiol; 2021 May; 174():104805. PubMed ID: 33838706 [TBL] [Abstract][Full Text] [Related]
3. Identification and potential application of key insecticidal metabolites in Tilia amurensis, a low-preference host of Hyphantria cunea. Yuan L; Li T; Huang Y; Zhang A; Yan S; Jiang D Pestic Biochem Physiol; 2024 Feb; 199():105796. PubMed ID: 38458667 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the Toxic Effects of Tannic Acid Treatment on Tan M; Wu H; Yan S; Jiang D Insects; 2022 Sep; 13(10):. PubMed ID: 36292820 [TBL] [Abstract][Full Text] [Related]
5. Toxicological assessment of cadmium exposure through Hyphantria cunea larvae on the predation fitness of Arma chinensis. Sun G; Wang Q; Tan M; Zhang A; Yan S; Jiang D Sci Total Environ; 2024 Nov; 949():175142. PubMed ID: 39084371 [TBL] [Abstract][Full Text] [Related]
6. Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae). Yuan Y; Li L; Zhao J; Chen M J Insect Sci; 2020 Jan; 20(1):. PubMed ID: 32061083 [TBL] [Abstract][Full Text] [Related]
7. Cadmium exposure-triggered growth retardation in Hyphantria cunea larvae involves disturbances in food utilization and energy metabolism. Zheng L; Tan M; Yan S; Jiang D Ecotoxicol Environ Saf; 2023 May; 256():114886. PubMed ID: 37037109 [TBL] [Abstract][Full Text] [Related]
8. Comparing the Performance of Hyphantria cunea (Lepidoptera: Arctiidae) on Artificial and Natural Diets: Feasibility of Mass-Rearing on Artificial Diets. Zhao XD; Geng YS; Hu TY; Li WX; Liang YY; Hao DJ J Econ Entomol; 2023 Feb; 116(1):181-191. PubMed ID: 36412250 [TBL] [Abstract][Full Text] [Related]
9. Defense response of Fraxinus mandshurica seedlings to Hyphantria cunea larvae under Cd stress: A contradiction between attraction and resistance. Yan S; Tan M; Zheng L; Wu H; Wang K; Chai R; Jiang D Sci Total Environ; 2023 Feb; 859(Pt 2):160390. PubMed ID: 36427402 [TBL] [Abstract][Full Text] [Related]
10. Steroid hormone 20-hydroxyecdysone disturbs fat body lipid metabolism and negatively regulates gluconeogenesis in Hyphantria cunea larvae. Zhang SY; Gao H; Askar A; Li XP; Zhang GC; Jing TZ; Zou H; Guan H; Zhao YH; Zou CS Insect Sci; 2023 Jun; 30(3):771-788. PubMed ID: 36342157 [TBL] [Abstract][Full Text] [Related]
11. Toxicity, antifeedant and physiological effects of trans-anethole against Hyphantria cunea Drury (Lep: Arctiidae). Pour SA; Shahriari M; Zibaee A; Mojarab-Mahboubkar M; Sahebzadeh N; Hoda H Pestic Biochem Physiol; 2022 Jul; 185():105135. PubMed ID: 35772838 [TBL] [Abstract][Full Text] [Related]
12. Cadmium exposure through the food chain reduces the parasitic fitness of Chouioia cunea to Hyphantria cunea pupae: An ecotoxicological risk to pest control. Tan M; Wu H; Li Y; Zhang A; Xu J; Chai R; Meng Z; Yan S; Jiang D Sci Total Environ; 2023 Aug; 887():164106. PubMed ID: 37178833 [TBL] [Abstract][Full Text] [Related]
13. Assessment of cytisine as an insecticide candidate for Hyphantria cunea management: Toxicological, biochemical, and control potential insights. Li T; Yuan L; Huang Y; Zhang A; Jiang D; Yan S Pestic Biochem Physiol; 2023 Nov; 196():105638. PubMed ID: 37945268 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of key genes in insulin signaling pathway as molecular targets for controlling the fall webworm, Hyphantria cunea. Yan L; Du H; Li Y; Li X; Sun L; Cao C Pest Manag Sci; 2023 Feb; 79(2):899-908. PubMed ID: 36317953 [TBL] [Abstract][Full Text] [Related]
15. Functional Identification and Characterization of Leucokinin and Its Receptor in the Fall Webworm, Sun L; Ma H; Gao Y; Wang Z; Cao C Front Physiol; 2021; 12():741362. PubMed ID: 34690813 [TBL] [Abstract][Full Text] [Related]
16. Hemolin increases the immune response of a caterpillar to NPV infection. Yan L; Nur Faidah A; Sun L; Cao C J Insect Physiol; 2024 Jun; 155():104651. PubMed ID: 38763360 [TBL] [Abstract][Full Text] [Related]
17. Role of the Subtilisin-like Serine Protease CJPRB from Wang W; Chen F Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835582 [No Abstract] [Full Text] [Related]
18. Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV). Sun L; Yin J; Du H; Liu P; Cao C Pestic Biochem Physiol; 2020 Feb; 163():254-262. PubMed ID: 31973865 [TBL] [Abstract][Full Text] [Related]
19. Knockdown of GFAT disrupts chitin synthesis in Hyphantria cunea larvae. Zou H; Zhang B; Zou C; Ma W; Zhang S; Wang Z; Bi B; Li S; Gao J; Zhang C; Zhang G; Zhang J Pestic Biochem Physiol; 2022 Nov; 188():105245. PubMed ID: 36464356 [TBL] [Abstract][Full Text] [Related]
20. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread. Chen Q; Zhao H; Wen M; Li J; Zhou H; Wang J; Zhou Y; Liu Y; Du L; Kang H; Zhang J; Cao R; Xu X; Zhou JJ; Ren B; Wang Y BMC Genomics; 2020 Mar; 21(1):242. PubMed ID: 32183717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]