BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37233091)

  • 1. Digestive Characteristics of
    Zhang A; Li T; Yuan L; Tan M; Jiang D; Yan S
    Insects; 2023 May; 14(5):. PubMed ID: 37233091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The high adaptability of Hyphantria cunea larvae to cinnamic acid involves in detoxification, antioxidation and gut microbiota response.
    Jiang D; Wu S; Tan M; Wang Q; Zheng L; Yan SC
    Pestic Biochem Physiol; 2021 May; 174():104805. PubMed ID: 33838706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and potential application of key insecticidal metabolites in Tilia amurensis, a low-preference host of Hyphantria cunea.
    Yuan L; Li T; Huang Y; Zhang A; Yan S; Jiang D
    Pestic Biochem Physiol; 2024 Feb; 199():105796. PubMed ID: 38458667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the Toxic Effects of Tannic Acid Treatment on
    Tan M; Wu H; Yan S; Jiang D
    Insects; 2022 Sep; 13(10):. PubMed ID: 36292820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae).
    Yuan Y; Li L; Zhao J; Chen M
    J Insect Sci; 2020 Jan; 20(1):. PubMed ID: 32061083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium exposure-triggered growth retardation in Hyphantria cunea larvae involves disturbances in food utilization and energy metabolism.
    Zheng L; Tan M; Yan S; Jiang D
    Ecotoxicol Environ Saf; 2023 May; 256():114886. PubMed ID: 37037109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the Performance of Hyphantria cunea (Lepidoptera: Arctiidae) on Artificial and Natural Diets: Feasibility of Mass-Rearing on Artificial Diets.
    Zhao XD; Geng YS; Hu TY; Li WX; Liang YY; Hao DJ
    J Econ Entomol; 2023 Feb; 116(1):181-191. PubMed ID: 36412250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defense response of Fraxinus mandshurica seedlings to Hyphantria cunea larvae under Cd stress: A contradiction between attraction and resistance.
    Yan S; Tan M; Zheng L; Wu H; Wang K; Chai R; Jiang D
    Sci Total Environ; 2023 Feb; 859(Pt 2):160390. PubMed ID: 36427402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steroid hormone 20-hydroxyecdysone disturbs fat body lipid metabolism and negatively regulates gluconeogenesis in Hyphantria cunea larvae.
    Zhang SY; Gao H; Askar A; Li XP; Zhang GC; Jing TZ; Zou H; Guan H; Zhao YH; Zou CS
    Insect Sci; 2023 Jun; 30(3):771-788. PubMed ID: 36342157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity, antifeedant and physiological effects of trans-anethole against Hyphantria cunea Drury (Lep: Arctiidae).
    Pour SA; Shahriari M; Zibaee A; Mojarab-Mahboubkar M; Sahebzadeh N; Hoda H
    Pestic Biochem Physiol; 2022 Jul; 185():105135. PubMed ID: 35772838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium exposure through the food chain reduces the parasitic fitness of Chouioia cunea to Hyphantria cunea pupae: An ecotoxicological risk to pest control.
    Tan M; Wu H; Li Y; Zhang A; Xu J; Chai R; Meng Z; Yan S; Jiang D
    Sci Total Environ; 2023 Aug; 887():164106. PubMed ID: 37178833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of cytisine as an insecticide candidate for Hyphantria cunea management: Toxicological, biochemical, and control potential insights.
    Li T; Yuan L; Huang Y; Zhang A; Jiang D; Yan S
    Pestic Biochem Physiol; 2023 Nov; 196():105638. PubMed ID: 37945268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of key genes in insulin signaling pathway as molecular targets for controlling the fall webworm, Hyphantria cunea.
    Yan L; Du H; Li Y; Li X; Sun L; Cao C
    Pest Manag Sci; 2023 Feb; 79(2):899-908. PubMed ID: 36317953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Identification and Characterization of Leucokinin and Its Receptor in the Fall Webworm,
    Sun L; Ma H; Gao Y; Wang Z; Cao C
    Front Physiol; 2021; 12():741362. PubMed ID: 34690813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemolin increases the immune response of a caterpillar to NPV infection.
    Yan L; Nur Faidah A; Sun L; Cao C
    J Insect Physiol; 2024 Jun; 155():104651. PubMed ID: 38763360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the Subtilisin-like Serine Protease CJPRB from
    Wang W; Chen F
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835582
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV).
    Sun L; Yin J; Du H; Liu P; Cao C
    Pestic Biochem Physiol; 2020 Feb; 163():254-262. PubMed ID: 31973865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knockdown of GFAT disrupts chitin synthesis in Hyphantria cunea larvae.
    Zou H; Zhang B; Zou C; Ma W; Zhang S; Wang Z; Bi B; Li S; Gao J; Zhang C; Zhang G; Zhang J
    Pestic Biochem Physiol; 2022 Nov; 188():105245. PubMed ID: 36464356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread.
    Chen Q; Zhao H; Wen M; Li J; Zhou H; Wang J; Zhou Y; Liu Y; Du L; Kang H; Zhang J; Cao R; Xu X; Zhou JJ; Ren B; Wang Y
    BMC Genomics; 2020 Mar; 21(1):242. PubMed ID: 32183717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-Bromopyruvate-induced glycolysis inhibition impacts larval growth and development and carbohydrate homeostasis in fall webworm, Hyphantria cunea Drury.
    Qiu Q; Zou H; Zou H; Jing T; Li X; Yan G; Geng N; Zhang B; Zhang Z; Zhang S; Yao B; Zhang G; Zou C
    Pestic Biochem Physiol; 2021 Nov; 179():104961. PubMed ID: 34802511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.