These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37233091)
21. 3-Bromopyruvate-induced glycolysis inhibition impacts larval growth and development and carbohydrate homeostasis in fall webworm, Hyphantria cunea Drury. Qiu Q; Zou H; Zou H; Jing T; Li X; Yan G; Geng N; Zhang B; Zhang Z; Zhang S; Yao B; Zhang G; Zou C Pestic Biochem Physiol; 2021 Nov; 179():104961. PubMed ID: 34802511 [TBL] [Abstract][Full Text] [Related]
22. Transfer of Cd along the food chain: The susceptibility of Hyphantria cunea larvae to Beauveria bassiana under Cd stress. Li Y; Tan M; Wu H; Zhang A; Xu J; Meng Z; Yan S; Jiang D J Hazard Mater; 2023 Jul; 453():131420. PubMed ID: 37084517 [TBL] [Abstract][Full Text] [Related]
23. Diapause induction, color change, and cold tolerance physiology of the diapausing larvae of the Chouioia cunea (Hymenoptera: Eulophidae). Zhao L; Xu X; Xu Z; Liu Y; Sun S J Insect Sci; 2014; 14():. PubMed ID: 25527599 [TBL] [Abstract][Full Text] [Related]
24. FDP-Na-induced enhancement of glycolysis impacts larval growth and development and chitin biosynthesis in fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). Zhang S; Zhang Y; Zou H; Li X; Zou H; Wang Z; Zou C Pestic Biochem Physiol; 2023 Sep; 195():105560. PubMed ID: 37666596 [TBL] [Abstract][Full Text] [Related]
25. Molecular basis of camphor repellency in Hyphantria cunea. Wang Y; Qu X; Tian Z; Zhou H; Yu Z; Zhou Y; Ren B Pestic Biochem Physiol; 2024 Sep; 204():106069. PubMed ID: 39277384 [TBL] [Abstract][Full Text] [Related]
26. Physiological Mechanisms of Variable Nutrient Accumulation Patterns Between Diapausing and Non-Diapausing Fall Webworm (Lepidoptera: Arctiidae) Pupae. Zhao L; Wang W; Qiu Y; Torson AS Environ Entomol; 2021 Oct; 50(5):1158-1165. PubMed ID: 34363460 [TBL] [Abstract][Full Text] [Related]
27. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: screening target genes and analyzing lethal effect. Zhang X; Fan Z; Zhang R; Kong X; Liu F; Fang J; Zhang S; Zhang Z Pest Manag Sci; 2023 Apr; 79(4):1566-1577. PubMed ID: 36527705 [TBL] [Abstract][Full Text] [Related]
28. The susceptibility of Hyphantria cunea larvae to microbial pesticides Bacillus thuringiensis and Mamestra brassicae nuclear polyhedrosis virus under Cd stress. Xu J; Zheng L; Tan M; Wu H; Yan S; Jiang D Pestic Biochem Physiol; 2023 Apr; 191():105383. PubMed ID: 36963948 [TBL] [Abstract][Full Text] [Related]
29. Optimization of the Xu C; Wei H; Wang L; Yin T; Zhuge Q Front Plant Sci; 2019; 10():335. PubMed ID: 30972085 [TBL] [Abstract][Full Text] [Related]
30. Role of digestive protease enzymes and related genes in host plant adaptation of a polyphagous pest, Spodoptera frugiperda. Hafeez M; Li XW; Zhang JM; Zhang ZJ; Huang J; Wang LK; Khan MM; Shah S; Fernández-Grandon GM; Lu YB Insect Sci; 2021 Jun; 28(3):611-626. PubMed ID: 33629522 [TBL] [Abstract][Full Text] [Related]
31. Gut microbiota facilitate adaptation of invasive moths to new host plants. Zhang S; Song F; Wang J; Li X; Zhang Y; Zhou W; Xu L ISME J; 2024 Jan; 18(1):. PubMed ID: 38423525 [TBL] [Abstract][Full Text] [Related]
32. Exendin-4 Caused Growth Arrest by Regulating Sugar Metabolism in Shi W; Zhang L; Zhao Y; Li X Insects; 2024 Jul; 15(7):. PubMed ID: 39057236 [TBL] [Abstract][Full Text] [Related]
33. Genomic analysis of two Chinese isolates of hyphantria cunea nucleopolyhedrovirus reveals a novel species of alphabaculovirus that infects hyphantria cunea drury (lepidoptera: arctiidae). Peng X; Zhang W; Lei C; Min S; Hu J; Wang Q; Sun X BMC Genomics; 2022 May; 23(1):367. PubMed ID: 35562654 [TBL] [Abstract][Full Text] [Related]
34. Differentially Expressed Proteins From the Peritrophic Membrane Related to the Lethal, Synergistic Mechanisms Observed in Hyphantria cunea Larvae Treated With a Mixture of Bt and Chlorbenzuron. Xu M; Xu F; Wu X J Insect Sci; 2017 Jan; 17(2):. PubMed ID: 28931154 [TBL] [Abstract][Full Text] [Related]
35. Chlorbenzuron caused growth arrest through interference of glycolysis and energy metabolism in Hyphantria cunea (Lepidoptera: Erebidae) larvae. Zhao Y; Zou C; Zhang L; Li C; Li X; Song L Pestic Biochem Physiol; 2023 Jun; 193():105466. PubMed ID: 37248002 [TBL] [Abstract][Full Text] [Related]
36. Transcriptomic analysis of interactions between Hyphantria cunea larvae and nucleopolyhedrovirus. Sun L; Liu P; Sun S; Yan S; Cao C Pest Manag Sci; 2019 Apr; 75(4):1024-1033. PubMed ID: 30230189 [TBL] [Abstract][Full Text] [Related]
37. Botanical Volatiles Selection in Mediating Electrophysiological Responses and Reproductive Behaviors for the Fall Webworm Moth Bai PH; Wang HM; Liu BS; Li M; Liu BM; Gu XS; Tang R Front Physiol; 2020; 11():486. PubMed ID: 32547409 [TBL] [Abstract][Full Text] [Related]
38. Metformin-induced AMPK activation suppresses larval growth and molting probably by disrupting 20E synthesis and glycometabolism in fall webworm, Hyphantria cunea Drury. Zou H; Zou H; Li X; Qiu Q; Geng N; Zhang B; Yan G; Zhang Z; Zhang S; Yao B; Zhang G; Zou C Pestic Biochem Physiol; 2022 May; 183():105083. PubMed ID: 35430073 [TBL] [Abstract][Full Text] [Related]
39. HcGr76 responds to fructose and chlorogenic acid and is involved in regulation of peptide expression in the midgut of Hyphantria cunea larvae. Sun J; Zhang W; Cui Z; Pan Y; Smagghe G; Zhang L; Wickham JD; Sun J; Mang D Pest Manag Sci; 2024 Nov; 80(11):5672-5683. PubMed ID: 38982883 [TBL] [Abstract][Full Text] [Related]
40. Putative carboxylesterase gene identification and their expression patterns in Ye J; Mang D; Kang K; Chen C; Zhang X; Tang Y; R Purba E; Song L; Zhang QH; Zhang L PeerJ; 2021; 9():e10919. PubMed ID: 33717687 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]