BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3723320)

  • 1. Studies on drug absorption from oral cavity: physicochemical factors affecting absorption from hamster cheek pouch.
    Kurosaki Y; Aya N; Okada Y; Nakayama T; Kimura T
    J Pharmacobiodyn; 1986 Mar; 9(3):287-96. PubMed ID: 3723320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrier-mediated absorption of salicylic acid from hamster cheek pouch mucosa.
    Utoguchi N; Watanabe Y; Takase Y; Suzuki T; Matsumoto M
    J Pharm Sci; 1999 Jan; 88(1):142-6. PubMed ID: 9874716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on drug absorption from oral cavity. II. Influence of the unstirred water layer on absorption from hamster cheek pouch in vitro and in vivo.
    Kurosaki Y; Hisaichi S; Hamada C; Nakayama T; Kimura T
    J Pharmacobiodyn; 1987 Apr; 10(4):180-7. PubMed ID: 3656065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption of salicylic acid through the oral mucous membrane of hamster cheek pouch.
    Tanaka M; Yanagibashi N; Fukuda H; Nagai T
    Chem Pharm Bull (Tokyo); 1980; 28(4):1056-61. PubMed ID: 7418104
    [No Abstract]   [Full Text] [Related]  

  • 5. Fluoride absorption through the hamster cheek pouch: a pH-dependent event.
    Whitford GM; Callan RS; Wang HS
    J Appl Toxicol; 1982 Dec; 2(6):303-6. PubMed ID: 7185910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional variation in oral mucosal drug absorption: permeability and degree of keratinization in hamster oral cavity.
    Kurosaki Y; Takatori T; Nishimura H; Nakayama T; Kimura T
    Pharm Res; 1991 Oct; 8(10):1297-301. PubMed ID: 1724562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of propranolol to the keratinized oral mucosa: avoidance of first-pass elimination and the use of 1-dodecylazacycloheptan-2-one (Azone) as an absorption enhancer of bioadhesive film-dosage form.
    Kurosaki Y; Takatori T; Kitayama M; Nakayama T; Kimura T
    J Pharmacobiodyn; 1988 Dec; 11(12):824-32. PubMed ID: 3254980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate constants of absorption versus physico-chemical parameters.
    Past T; Tapsonyi Z; Nagy L; Jávor T
    Int J Clin Pharmacol Biopharm; 1978 Sep; 16(9):413-6. PubMed ID: 29840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A membrane model of the human oral mucosa as derived from buccal absorption performance and physicochemical properties of the beta-blocking drugs atenolol and propranolol.
    Schürmann W; Turner P
    J Pharm Pharmacol; 1978 Mar; 30(3):137-47. PubMed ID: 24685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Buccal drug absorption. II: In vitro diffusion across the hamster cheek pouch.
    Garren KW; Repta AJ
    J Pharm Sci; 1989 Feb; 78(2):160-4. PubMed ID: 2715940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between the dipole moment and rate of absorption of drugs.
    Past T; Tapsonyi Z; Hortobágyi I
    Acta Med Acad Sci Hung; 1979; 36(1):137-47. PubMed ID: 43063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cultured buccal epithelium: an in vitro model derived from the hamster pouch for studying drug transport and metabolism.
    Tavakoli-Saberi MR; Audus KL
    Pharm Res; 1989 Feb; 6(2):160-6. PubMed ID: 2474807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Buccal absorption. III. Simultaneous diffusion and metabolism of an aminopeptidase substrate in the hamster cheek pouch.
    Garren KW; Topp EM; Repta AJ
    Pharm Res; 1989 Nov; 6(11):966-70. PubMed ID: 2594690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Keratinized epithelial transport of beta-blocking agents. I. Relationship between physicochemical properties of drugs and the flux across rat skin and hamster cheek pouch.
    Kai T; Isami T; Kobata K; Kurosaki Y; Nakayama T; Kimura T
    Chem Pharm Bull (Tokyo); 1992 Sep; 40(9):2498-504. PubMed ID: 1359932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeation of several drugs through keratinized epithelial-free membrane of hamster cheek pouch.
    Tsutsumi K; Obata Y; Takayama K; Isowa K; Nagai T
    Int J Pharm; 1999 Jan; 177(1):7-14. PubMed ID: 10205600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Hamster's cheek pouches as a model for investigation of the oral mucosa permeability].
    Starokadoms'kyĭ PL
    Fiziol Zh (1994); 2006; 52(1):101-5. PubMed ID: 16553305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipophilicity and biological acitivity. Drug transport and drug distribution in model systems and in biological systems.
    Kubinyi H
    Arzneimittelforschung; 1979; 29(8):1067-80. PubMed ID: 40579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of the Syrian hamster cheek pouch.
    Hardy MH; Vrablic OE; Covant HA; Kandarkar SV
    Anat Rec; 1986 Mar; 214(3):273-82. PubMed ID: 3963422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chlorhexidine on the hamster cheek pouch. Microcirculation and penetration studies.
    Luostarinen V; Söderling E; Knuuttila M; Paunio K
    J Periodontol; 1977 Jul; 48(7):421-4. PubMed ID: 267765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on development of dosage forms for pediatric use (V) oral mucosal irritation study of gummi drugs in hamster cheek pouch.
    Namiki N; Takagi N; Yuasa H; Kanaya Y
    Biol Pharm Bull; 1998 Jan; 21(1):87-9. PubMed ID: 9477177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.