These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37233359)
1. Surface Modification of Biomedical Ti-18Zr-15Nb Alloy by Atomic Layer Deposition and Ag Nanoparticles Decoration. Konopatsky A; Teplyakova T; Sheremetyev V; Yakimova T; Boychenko O; Kozik M; Shtansky D; Prokoshkin S J Funct Biomater; 2023 Apr; 14(5):. PubMed ID: 37233359 [TBL] [Abstract][Full Text] [Related]
2. Surface modification and antibacterial properties of superelastic Ti-Zr-based alloys for medical application. Konopatsky AS; Teplyakova TO; Popova DV; Vlasova KY; Prokoshkin SD; Shtansky DV Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 1):112183. PubMed ID: 34741909 [TBL] [Abstract][Full Text] [Related]
3. The Electrochemical and Mechanical Behavior of Bulk and Porous Superelastic Ti‒Zr-Based Alloys for Biomedical Applications. Zhukova Y; Korobkova A; Dubinskiy S; Pustov Y; Konopatsky A; Podgorny D; Filonov M; Prokoshkin S; Brailovski V Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31357580 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of Biomedical Ti-Zr-Nb by Reducing Metal Oxides with Calcium Hydride. Yudin S; Alimov I; Volodko S; Gurianov A; Markova G; Kasimtsev A; Sviridova T; Permyakova D; Evstratov E; Cheverikin V; Moskovskikh D J Funct Biomater; 2023 May; 14(5):. PubMed ID: 37233381 [TBL] [Abstract][Full Text] [Related]
5. Surface modification of the laser powder bed-fused Ti-Zr-Nb scaffolds by dynamic chemical etching and Ag nanoparticles decoration. Sheremetyev V; Konopatsky A; Teplyakova T; Lezin V; Lukashevich K; Derkach M; Kostyleva A; Koudan E; Permyakova E; Iakimova T; Boychenko O; Klyachko N; Shtansky D; Prokoshkin S; Brailovski V Biomater Adv; 2024 Jul; 161():213882. PubMed ID: 38710121 [TBL] [Abstract][Full Text] [Related]
6. Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti-Nb-based alloys for bone implants. Sheremetyev V; Petrzhik M; Zhukova Y; Kazakbiev A; Arkhipova A; Moisenovich M; Prokoshkin S; Brailovski V J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):647-662. PubMed ID: 31121090 [TBL] [Abstract][Full Text] [Related]
7. Effect of High-Pressure Torsion and Annealing on the Structure, Phase Composition, and Microhardness of the Ti-18Zr-15Nb (at. %) Alloy. Gunderov D; Kim K; Gunderova S; Churakova A; Lebedev Y; Nafikov R; Derkach M; Lukashevich K; Sheremetyev V; Prokoshkin S Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837384 [TBL] [Abstract][Full Text] [Related]
8. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Fu J; Yamamoto A; Kim HY; Hosoda H; Miyazaki S Acta Biomater; 2015 Apr; 17():56-67. PubMed ID: 25676584 [TBL] [Abstract][Full Text] [Related]
9. Effect of Cooling and Annealing Conditions on the Microstructure, Mechanical and Superelastic Behavior of a Rotary Forged Ti-18Zr-15Nb (at. %) Bar Stock for Spinal Implants. Lukashevich K; Sheremetyev V; Komissarov A; Cheverikin V; Andreev V; Prokoshkin S; Brailovski V J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36412899 [TBL] [Abstract][Full Text] [Related]
10. Surface Characterization of New β Ti-25Ta-Zr-Nb Alloys Modified by Micro-Arc Oxidation. Kuroda PAB; Grandini CR; Afonso CRM Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984232 [TBL] [Abstract][Full Text] [Related]
11. In Vitro Study of Zirconia Surface Modification for Dental Implants by Atomic Layer Deposition. Hayashi T; Asakura M; Koie S; Hasegawa S; Mieki A; Aimu K; Kawai T Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373249 [TBL] [Abstract][Full Text] [Related]
12. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy. Fu J; Kim HY; Miyazaki S J Mech Behav Biomed Mater; 2017 Jan; 65():716-723. PubMed ID: 27750162 [TBL] [Abstract][Full Text] [Related]
13. Bioactive Coating on Ti Alloy with High Osseointegration and Antibacterial Ag Nanoparticles. Sobolev A; Valkov A; Kossenko A; Wolicki I; Zinigrad M; Borodianskiy K ACS Appl Mater Interfaces; 2019 Oct; 11(43):39534-39544. PubMed ID: 31590486 [TBL] [Abstract][Full Text] [Related]
14. Effect of Zr Content on Phase Stability, Deformation Behavior, and Young's Modulus in Ti-Nb-Zr Alloys. Kim KM; Kim HY; Miyazaki S Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963854 [TBL] [Abstract][Full Text] [Related]
15. Preparation, structural, microstructural, mechanical, and cytotoxic characterization of Ti-15Nb alloy for biomedical applications. Kuroda PAB; da Silva LM; Sousa KDSJ; Donato TAG; Grandini CR Artif Organs; 2020 Aug; 44(8):811-817. PubMed ID: 31876963 [TBL] [Abstract][Full Text] [Related]
16. Atomic Layer Deposition Coating of TiO Yang F; Chang R; Webster TJ Int J Nanomedicine; 2019; 14():9955-9970. PubMed ID: 31908452 [TBL] [Abstract][Full Text] [Related]
17. Nb-Ti-Zr alloys for orthopedic implants. Zhang T; Ou P; Ruan J; Yang H J Biomater Appl; 2021 May; 35(10):1284-1293. PubMed ID: 33148099 [TBL] [Abstract][Full Text] [Related]
18. Effect of Cold Drawing and Annealing in Thermomechanical Treatment Route on the Microstructure and Functional Properties of Superelastic Ti-Zr-Nb Alloy. Kudryashova A; Lukashevich K; Derkach M; Strakhov O; Dubinskiy S; Andreev V; Prokoshkin S; Sheremetyev V Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512291 [TBL] [Abstract][Full Text] [Related]
19. Corrosion and wear behavior of Ti-5Cu-xNb biomedical alloy in simulated body fluid for dental implant applications. Pandey AK; Gautam RK; Behera CK J Mech Behav Biomed Mater; 2023 Jan; 137():105533. PubMed ID: 36335694 [TBL] [Abstract][Full Text] [Related]
20. Titanium-Based Alloy Surface Modification with TiO Kitagawa IL; Miyazaki CM; Pitol-Palin L; Okamoto R; de Vasconcellos LMR; Constantino CJL; Lisboa-Filho PN ACS Appl Bio Mater; 2021 Apr; 4(4):3055-3066. PubMed ID: 35014394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]