BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 37233533)

  • 1. Bile Acids as Inducers of Protonophore and Ionophore Permeability of Biological and Artificial Membranes.
    Samartsev VN; Khoroshavina EI; Pavlova EK; Dubinin MV; Semenova AA
    Membranes (Basel); 2023 Apr; 13(5):. PubMed ID: 37233533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium ionophore activity of intestinal secretory compounds. An in vitro porcine model for the effects of bile acids, hydroxy-fatty acids and dioctyl sulfosuccinate.
    Maenz DD; Forsyth GW
    Digestion; 1984; 30(3):138-50. PubMed ID: 6209185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-chain α,ω-dioic acids as inducers of cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria loaded with calcium or strontium ions.
    Dubinin MV; Adakeeva SI; Samartsev VN
    Biochemistry (Mosc); 2013 Apr; 78(4):412-7. PubMed ID: 23590444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties.
    Sousa T; Castro RE; Pinto SN; Coutinho A; Lucas SD; Moreira R; Rodrigues CM; Prieto M; Fernandes F
    J Lipid Res; 2015 Nov; 56(11):2158-71. PubMed ID: 26351365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of membrane cholesterol in determining bile acid cytotoxicity and cytoprotection of ursodeoxycholic acid.
    Zhou Y; Doyen R; Lichtenberger LM
    Biochim Biophys Acta; 2009 Feb; 1788(2):507-13. PubMed ID: 19150330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestasis therapy.
    Rolo AP; Oliveira PJ; Moreno AJ; Palmeira CM
    Toxicol Sci; 2000 Sep; 57(1):177-85. PubMed ID: 10966524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action of ionophore A23187 at the cellular level. Separation of effects at the plasma and mitochondrial membranes.
    Babcock DF; First NL; Lardy HA
    J Biol Chem; 1976 Jul; 251(13):3881-6. PubMed ID: 776978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progressive stages of mitochondrial destruction caused by cell toxic bile salts.
    Schulz S; Schmitt S; Wimmer R; Aichler M; Eisenhofer S; Lichtmannegger J; Eberhagen C; Artmann R; Tookos F; Walch A; Krappmann D; Brenner C; Rust C; Zischka H
    Biochim Biophys Acta; 2013 Sep; 1828(9):2121-33. PubMed ID: 23685124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production.
    Rodrigues CM; Fan G; Wong PY; Kren BT; Steer CJ
    Mol Med; 1998 Mar; 4(3):165-78. PubMed ID: 9562975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the hydrophobicity overcomes unfavorable deprotonation making octylamino-substituted 7-nitrobenz-2-oxa-1,3-diazole (n-octylamino-NBD) a protonophore and uncoupler of oxidative phosphorylation in mitochondria.
    Denisov SS; Kotova EA; Khailova LS; Korshunova GA; Antonenko YN
    Bioelectrochemistry; 2014 Aug; 98():30-8. PubMed ID: 24650997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function.
    Desai AJ; Dong M; Harikumar KG; Miller LJ
    Am J Physiol Gastrointest Liver Physiol; 2015 Sep; 309(5):G377-86. PubMed ID: 26138469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrially-mediated toxicity of bile acids.
    Palmeira CM; Rolo AP
    Toxicology; 2004 Oct; 203(1-3):1-15. PubMed ID: 15363577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacology of ursodeoxycholic acid, an enterohepatic drug.
    Hofmann AF
    Scand J Gastroenterol Suppl; 1994; 204():1-15. PubMed ID: 7824870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palmitic and stearic acids bind Ca2+ with high affinity and form nonspecific channels in black-lipid membranes. Possible relation to Ca2+-activated mitochondrial pores.
    Mironova GD; Gateau-Roesch O; Levrat C; Gritsenko E; Pavlov E; Lazareva AV; Limarenko E; Rey C; Louisot P; Saris NE
    J Bioenerg Biomembr; 2001 Aug; 33(4):319-31. PubMed ID: 11710807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of a bile acid receptor in isolated liver surface membranes.
    Accatino L; Simon FR
    J Clin Invest; 1976 Feb; 57(2):496-508. PubMed ID: 3520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory uncoupling by increased H(+) or K(+) flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition.
    Morota S; Piel S; Hansson MJ
    BMC Cell Biol; 2013 Sep; 14():40. PubMed ID: 24053891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cytotoxicity of hydrophobic bile acids is ameliorated by more hydrophilic bile acids in intestinal cell lines IEC-6 and Caco-2.
    Araki Y; Andoh A; Bamba H; Yoshikawa K; Doi H; Komai Y; Higuchi A; Fujiyama Y
    Oncol Rep; 2003; 10(6):1931-6. PubMed ID: 14534721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Proton transport is necessary for divalent metal cations release from deenergized mitochondria].
    Akopova OV; Sahach VF
    Ukr Biokhim Zh (1999); 2007; 79(1):58-67. PubMed ID: 18030735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatic bile flow.
    Strange RC
    Physiol Rev; 1984 Oct; 64(4):1055-102. PubMed ID: 6387729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of mitochondrial K(+) permeability and reactive oxygen species production by the p13 protein of human T-cell leukemia virus type 1.
    Silic-Benussi M; Cannizzaro E; Venerando A; Cavallari I; Petronilli V; La Rocca N; Marin O; Chieco-Bianchi L; Di Lisa F; D'Agostino DM; Bernardi P; Ciminale V
    Biochim Biophys Acta; 2009 Jul; 1787(7):947-54. PubMed ID: 19366603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.