BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37233695)

  • 1. Dynamic Changes in Plant Secondary Metabolites Induced by
    Wu Z; Gao T; Liang Z; Hao J; Liu P; Liu X
    Metabolites; 2023 May; 13(5):. PubMed ID: 37233695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidrug resistance of
    Wu Z; Bi Y; Zhang J; Gao T; Li X; Hao J; Li G; Liu P; Liu X
    mBio; 2024 Feb; 15(2):e0223723. PubMed ID: 38259067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional profiling of defense responses to
    Badmi R; Tengs T; Brurberg MB; Elameen A; Zhang Y; Haugland LK; Fossdal CG; Hytönen T; Krokene P; Thorstensen T
    Front Plant Sci; 2022; 13():1025422. PubMed ID: 36570914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversified Regulation of Cytokinin Levels and Signaling During
    Li B; Wang R; Wang S; Zhang J; Chang L
    Front Plant Sci; 2021; 12():584042. PubMed ID: 33643340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased phenylalanine levels in plant leaves reduces susceptibility to Botrytis cinerea.
    Oliva M; Hatan E; Kumar V; Galsurker O; Nisim-Levi A; Ovadia R; Galili G; Lewinsohn E; Elad Y; Alkan N; Oren-Shamir M
    Plant Sci; 2020 Jan; 290():110289. PubMed ID: 31779900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen-mediated metabolic patterns of susceptibility to Botrytis cinerea infection in tomato (Solanum lycopersicum) stems.
    Lacrampe N; Colombié S; Dumont D; Nicot P; Lecompte F; Lugan R
    Planta; 2023 Jan; 257(2):41. PubMed ID: 36680621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR).
    Govrin EM; Levine A
    Plant Mol Biol; 2002 Feb; 48(3):267-76. PubMed ID: 11855728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea.
    Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM
    Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RcTGA1 and glucosinolate biosynthesis pathway involvement in the defence of rose against the necrotrophic fungus Botrytis cinerea.
    Gao P; Zhang H; Yan H; Wang Q; Yan B; Jian H; Tang K; Qiu X
    BMC Plant Biol; 2021 May; 21(1):223. PubMed ID: 34001006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection.
    Chassot C; Buchala A; Schoonbeek HJ; Métraux JP; Lamotte O
    Plant J; 2008 Aug; 55(4):555-67. PubMed ID: 18452590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack.
    Kumar V; Hatan E; Bar E; Davidovich-Rikanati R; Doron-Faigenboim A; Spitzer-Rimon B; Elad Y; Alkan N; Lewinsohn E; Oren-Shamir M
    Plant J; 2020 Sep; 104(1):226-240. PubMed ID: 32645754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil.
    Schoonbeek H; Del Sorbo G; De Waard MA
    Mol Plant Microbe Interact; 2001 Apr; 14(4):562-71. PubMed ID: 11310744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea.
    Hatmi S; Trotel-Aziz P; Villaume S; Couderchet M; Clément C; Aziz A
    J Exp Bot; 2014 Jan; 65(1):75-88. PubMed ID: 24170740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries.
    Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C
    J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The necrotroph
    Chen H; Zhang S; He S; A R; Wang M; Liu S
    J Ginseng Res; 2022 Nov; 46(6):790-800. PubMed ID: 36312732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined Use of
    Li TT; Zhang JD; Tang JQ; Liu ZC; Li YQ; Chen J; Zou LW
    Plant Dis; 2020 May; 104(5):1298-1304. PubMed ID: 32196417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal Activity of Endophytic
    Li P; Feng B; Yao Z; Wei B; Zhao Y; Shi S
    Front Microbiol; 2022; 13():935675. PubMed ID: 35935203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea.
    Kretschmer M; Leroch M; Mosbach A; Walker AS; Fillinger S; Mernke D; Schoonbeek HJ; Pradier JM; Leroux P; De Waard MA; Hahn M
    PLoS Pathog; 2009 Dec; 5(12):e1000696. PubMed ID: 20019793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tavaborole-Induced Inhibition of the Aminoacyl-tRNA Biosynthesis Pathway against
    Zhao WB; An JX; Hu YM; Li AP; Zhang SY; Zhang BQ; Zhang ZJ; Luo XF; Bian Q; Ma Y; Ding YY; Wang R; Liu YQ
    J Agric Food Chem; 2022 Oct; 70(39):12297-12309. PubMed ID: 36149871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.