These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 37233726)
1. Confining Co-Based Nanocatalysts by Ultrathin Nanotubes for Efficient Transfer Hydrogenation of Biomass Derivatives. Shao YR; Zhao F; Wei ZC; Huo YF; Dai JJ; Hu TL ACS Appl Mater Interfaces; 2023 Jun; 15(22):26637-26649. PubMed ID: 37233726 [TBL] [Abstract][Full Text] [Related]
2. In Situ Construction of a Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions. Shao YR; Zhou L; Yu L; Li ZF; Li YT; Li W; Hu TL ACS Appl Mater Interfaces; 2022 Apr; 14(15):17195-17207. PubMed ID: 35384659 [TBL] [Abstract][Full Text] [Related]
3. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions. Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298 [TBL] [Abstract][Full Text] [Related]
4. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites. Li J; Zhao S; Li Z; Liu D; Chi Y; Hu C Inorg Chem; 2021 Jun; 60(11):7785-7793. PubMed ID: 33755456 [TBL] [Abstract][Full Text] [Related]
5. Surface-sealing encapsulation of phosphotungstic acid in microporous UiO-66 as a bifunctional catalyst for transfer hydrogenation of levulinic acid to γ-valerolactone. Tan H; Rong S; Zong Z; Zhang P; Zhao R; Song F; Cui H; Chen ZN; Yi W; Zhang F Phys Chem Chem Phys; 2023 Jul; 25(27):18215-18223. PubMed ID: 37394949 [TBL] [Abstract][Full Text] [Related]
6. Enhancing reductive conversion of levulinic acid and levulinates to γ-valerolactone: Role of oxygen vacancy in MnOx catalysts. Liu Y; Gao L; Chang G; Zhou W Bioresour Technol; 2024 Aug; 406():131001. PubMed ID: 38897549 [TBL] [Abstract][Full Text] [Related]
7. The construction of novel and efficient hafnium catalysts using naturally existing tannic acid for Meerwein-Ponndorf-Verley reduction. Wang X; Hao J; Deng L; Zhao H; Liu Q; Li N; He R; Zhi K; Zhou H RSC Adv; 2020 Feb; 10(12):6944-6952. PubMed ID: 35493886 [TBL] [Abstract][Full Text] [Related]
8. Conversion of levulinic acid to γ-valerolactone over Ru/Al Wang R; Chen L; Zhang X; Zhang Q; Li Y; Wang C; Ma L RSC Adv; 2018 Dec; 8(71):40989-40995. PubMed ID: 35557899 [TBL] [Abstract][Full Text] [Related]
9. MoO Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068 [TBL] [Abstract][Full Text] [Related]
10. Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid. Hu D; Xu H; Wu Z; Zhang M; Zhao Z; Wang Y; Yan K Front Chem; 2021; 9():725175. PubMed ID: 34712649 [TBL] [Abstract][Full Text] [Related]
11. Biomass Sucrose-Derived Cobalt@Nitrogen-Doped Carbon for Catalytic Transfer Hydrogenation of Nitroarenes with Formic Acid. Yuan M; Long Y; Yang J; Hu X; Xu D; Zhu Y; Dong Z ChemSusChem; 2018 Dec; 11(23):4156-4165. PubMed ID: 30240135 [TBL] [Abstract][Full Text] [Related]
12. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators. Yun WC; Yang MT; Lin KA J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993 [TBL] [Abstract][Full Text] [Related]
13. γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis. Córdova-Pérez GE; Cortez-Elizalde J; Silahua-Pavón AA; Cervantes-Uribe A; Arévalo-Pérez JC; Cordero-Garcia A; de Los Monteros AEE; Espinosa-González CG; Godavarthi S; Ortiz-Chi F; Guerra-Que Z; Torres-Torres JG Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745357 [TBL] [Abstract][Full Text] [Related]
14. Recyclable Zr/Hf-Containing Acid-Base Bifunctional Catalysts for Hydrogen Transfer Upgrading of Biofuranics: A Review. Liu Y; Liu X; Li M; Meng Y; Li J; Zhang Z; Zhang H Front Chem; 2021; 9():812331. PubMed ID: 34993179 [TBL] [Abstract][Full Text] [Related]
15. Transfer hydrogenation of phenol over Co-CoO Nie Y; Lin W; Zhang Y; Chen Y; Nie R Dalton Trans; 2022 Oct; 51(41):15983-15989. PubMed ID: 36200341 [TBL] [Abstract][Full Text] [Related]
16. Selective Hydrogenation of Furfural over the Co-Based Catalyst: A Subtle Synergy with Ni and Zn Dopants. Li S; Fan Y; Wu C; Zhuang C; Wang Y; Li X; Zhao J; Zheng Z ACS Appl Mater Interfaces; 2021 Feb; 13(7):8507-8517. PubMed ID: 33570382 [TBL] [Abstract][Full Text] [Related]
17. Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu-Re/TiO Liu Y; Liu K; Zhang M; Zhang K; Ma J; Xiao S; Wei Z; Deng S RSC Adv; 2021 Dec; 12(1):602-610. PubMed ID: 35424528 [TBL] [Abstract][Full Text] [Related]
18. Nitrogen-doped graphene supported Ni as an efficient and stable catalyst for levulinic acid hydrogenation. Ding Q; Wang Y; Ma L Nanotechnology; 2022 Jun; 33(35):. PubMed ID: 33887710 [TBL] [Abstract][Full Text] [Related]
19. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. Chia M; Dumesic JA Chem Commun (Camb); 2011 Nov; 47(44):12233-5. PubMed ID: 22005944 [TBL] [Abstract][Full Text] [Related]
20. A novel hafnium-graphite oxide catalyst for the Meerwein-Ponndorf-Verley reaction and the activation effect of the solvent. Li X; Du Z; Wu Y; Zhen Y; Shao R; Li B; Chen C; Liu Q; Zhou H RSC Adv; 2020 Mar; 10(17):9985-9995. PubMed ID: 35498581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]