These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 37233754)

  • 1. Biotechnological applications of biofilms formed by osmotolerant and halotolerant yeasts.
    Andreu C; Del Olmo ML
    Appl Microbiol Biotechnol; 2023 Jul; 107(14):4409-4427. PubMed ID: 37233754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in the biology and biotechnological applications of halotolerant yeasts.
    Andreu C; Zarnowski R; Del Olmo ML
    World J Microbiol Biotechnol; 2022 Jan; 38(2):27. PubMed ID: 34989905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and characterization of biofilms formed by salt-tolerant yeast strains in seawater-based growth medium.
    Zarnowski R; Sanchez H; Andreu C; Andes D; Del Olmo ML
    Appl Microbiol Biotechnol; 2021 Mar; 105(6):2411-2426. PubMed ID: 33630153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts.
    Coi AL; Bigey F; Mallet S; Marsit S; Zara G; Gladieux P; Galeote V; Budroni M; Dequin S; Legras JL
    Mol Ecol; 2017 Apr; 26(7):2150-2166. PubMed ID: 28192619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast biofilm in food realms: occurrence and control.
    Zara G; Budroni M; Mannazzu I; Fancello F; Zara S
    World J Microbiol Biotechnol; 2020 Aug; 36(9):134. PubMed ID: 32776210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population analysis of biofilm yeasts during fino sherry wine aging in the Montilla-Moriles D.O. region.
    Marin-Menguiano M; Romero-Sanchez S; Barrales RR; Ibeas JI
    Int J Food Microbiol; 2017 Mar; 244():67-73. PubMed ID: 28068590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must.
    Tofalo R; Chaves-López C; Di Fabio F; Schirone M; Felis GE; Torriani S; Paparella A; Suzzi G
    Int J Food Microbiol; 2009 Apr; 130(3):179-87. PubMed ID: 19230999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Non-
    Liu S; Laaksonen O; Li P; Gu Q; Yang B
    J Agric Food Chem; 2022 Jan; 70(3):736-750. PubMed ID: 35019274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of yeasts isolated from red wine surface film.
    Volleková A; Malík F; Vollek V; Linczényiová K
    Folia Microbiol (Praha); 1996; 41(4):347-52. PubMed ID: 9131792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
    Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vinification without
    Csoma H; Kállai Z; Antunovics Z; Czentye K; Sipiczki M
    Microorganisms; 2020 Dec; 9(1):. PubMed ID: 33374579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Ccw7p cell wall proteins and the encoding genes of Saccharomyces cerevisiae wine yeast strains: relevance for flor formation.
    Kovács M; Stuparevic I; Mrsa V; Maráz A
    FEMS Yeast Res; 2008 Nov; 8(7):1115-26. PubMed ID: 18657192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the role of the covalently linked cell wall protein (Ccw14p) and yeast glycoprotein (Ygp1p) within biofilm formation in a flor yeast strain.
    Moreno-García J; Coi AL; Zara G; García-Martínez T; Mauricio JC; Budroni M
    FEMS Yeast Res; 2018 Mar; 18(2):. PubMed ID: 29370419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae.
    Magyar I; Tóth T
    Food Microbiol; 2011 Feb; 28(1):94-100. PubMed ID: 21056780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on acetate ester production by non-saccharomyces wine yeasts.
    Rojas V; Gil JV; Piñaga F; Manzanares P
    Int J Food Microbiol; 2001 Nov; 70(3):283-9. PubMed ID: 11764193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast biofilms on abiotic surfaces: Adhesion factors and control methods.
    Alonso VPP; Lemos JG; Nascimento MDSD
    Int J Food Microbiol; 2023 Sep; 400():110265. PubMed ID: 37267839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of sterile ime1Delta-transgenic Saccharomyces cerevisiae wine yeasts unable to disseminate in nature.
    Ramírez M; Ambrona J
    Appl Environ Microbiol; 2008 Apr; 74(7):2129-34. PubMed ID: 18245242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probiotic Yeasts Inhibit Virulence of Non
    Kunyeit L; Kurrey NK; Anu-Appaiah KA; Rao RP
    mBio; 2019 Oct; 10(5):. PubMed ID: 31615960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.
    Medina K; Boido E; Dellacassa E; Carrau F
    Int J Food Microbiol; 2012 Jul; 157(2):245-50. PubMed ID: 22687186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.
    Alexandre H
    Int J Food Microbiol; 2013 Oct; 167(2):269-75. PubMed ID: 24141073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.