BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37233758)

  • 1. Image quality and lesion detectability of deep learning-accelerated T2-weighted Dixon imaging of the cervical spine.
    Seo G; Lee SJ; Park DH; Paeng SH; Koerzdoerfer G; Nickel MD; Sung J
    Skeletal Radiol; 2023 Dec; 52(12):2451-2459. PubMed ID: 37233758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes.
    Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S
    Eur Radiol; 2022 Sep; 32(9):6118-6125. PubMed ID: 35348861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI.
    Yoo H; Yoo RE; Choi SH; Hwang I; Lee JY; Seo JY; Koh SY; Choi KS; Kang KM; Yun TJ
    Eur Radiol; 2023 Dec; 33(12):8656-8668. PubMed ID: 37498386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning reconstruction for the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI: comparison with 3T MRI without deep learning reconstruction.
    Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S
    Neuroradiology; 2022 Oct; 64(10):2077-2083. PubMed ID: 35918450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of image quality and interchangeability between standard and deep learning-reconstructed T2-weighted spine MRI.
    Lee S; Jung JY; Chung H; Lee HS; Nickel D; Lee J; Lee SY
    Magn Reson Imaging; 2024 Jun; 109():211-220. PubMed ID: 38513791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-learning-reconstructed high-resolution 3D cervical spine MRI for foraminal stenosis evaluation.
    Jardon M; Tan ET; Chazen JL; Sahr M; Wen Y; Schneider B; Sneag DB
    Skeletal Radiol; 2023 Apr; 52(4):725-732. PubMed ID: 36269331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic evaluation of deep learning accelerated lumbar spine MRI.
    Awan KM; Goncalves Filho ALM; Tabari A; Applewhite BP; Lang M; Lo WC; Sellers R; Kollasch P; Clifford B; Nickel D; Husseni J; Rapalino O; Schaefer P; Cauley S; Huang SY; Conklin J
    Neuroradiol J; 2024 Jun; 37(3):323-331. PubMed ID: 38195418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI.
    Sun S; Tan ET; Mintz DN; Sahr M; Endo Y; Nguyen J; Lebel RM; Carrino JA; Sneag DB
    Eur Radiol; 2022 Sep; 32(9):6167-6177. PubMed ID: 35322280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI.
    Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST
    Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging in the evaluation of cervical foraminal stenosis: comparison of 3D T2 SPACE with sagittal oblique 2D T2 TSE.
    Barnaure I; Galley J; Fritz B; Sutter R
    Skeletal Radiol; 2022 Jul; 51(7):1453-1462. PubMed ID: 35006279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical MRI grading system for cervical foraminal stenosis based on oblique sagittal images.
    Park HJ; Kim SS; Lee SY; Park NH; Chung EC; Rho MH; Kwon HJ; Kook SH
    Br J Radiol; 2013 May; 86(1025):20120515. PubMed ID: 23410800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid lumbar MRI protocol using 3D imaging and deep learning reconstruction.
    Chazen JL; Tan ET; Fiore J; Nguyen JT; Sun S; Sneag DB
    Skeletal Radiol; 2023 Jul; 52(7):1331-1338. PubMed ID: 36602576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI of non-specific low back pain and/or lumbar radiculopathy: do we need T1 when using a sagittal T2-weighted Dixon sequence?
    Zanchi F; Richard R; Hussami M; Monier A; Knebel JF; Omoumi P
    Eur Radiol; 2020 May; 30(5):2583-2593. PubMed ID: 32020402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can T2-weighted Dixon fat-only images replace T1-weighted images in degenerative disc disease with Modic changes on lumbar spine MRI?
    Yang S; Lassalle L; Mekki A; Appert G; Rannou F; Nguyen C; Lefèvre-Colau MM; Mutschler C; Drapé JL; Feydy A
    Eur Radiol; 2021 Dec; 31(12):9380-9389. PubMed ID: 33993328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence.
    Shanbhogue K; Tong A; Smereka P; Nickel D; Arberet S; Anthopolos R; Chandarana H
    Eur Radiol; 2021 Nov; 31(11):8447-8457. PubMed ID: 33961086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction.
    Hahn S; Yi J; Lee HJ; Lee Y; Lim YJ; Bang JY; Kim H; Lee J
    AJR Am J Roentgenol; 2022 Mar; 218(3):506-516. PubMed ID: 34523950
    [No Abstract]   [Full Text] [Related]  

  • 17. Deep learning for automated, interpretable classification of lumbar spinal stenosis and facet arthropathy from axial MRI.
    Bharadwaj UU; Christine M; Li S; Chou D; Pedoia V; Link TM; Chin CT; Majumdar S
    Eur Radiol; 2023 May; 33(5):3435-3443. PubMed ID: 36920520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity.
    Almansour H; Herrmann J; Gassenmaier S; Lingg A; Nickel MD; Kannengiesser S; Arberet S; Othman AE; Afat S
    Acad Radiol; 2023 May; 30(5):863-872. PubMed ID: 35810067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Productivity Using Deep Learning-assisted Reporting for Lumbar Spine MRI.
    Lim DSW; Makmur A; Zhu L; Zhang W; Cheng AJL; Sia DSY; Eide SE; Ong HY; Jagmohan P; Tan WC; Khoo VM; Wong YM; Thian YL; Baskar S; Teo EC; Algazwi DAR; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST; Hallinan JTPD
    Radiology; 2022 Oct; 305(1):160-166. PubMed ID: 35699577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interreader Reliability and Clinical Validity of a Magnetic Resonance Imaging Grading System for Cervical Foraminal Stenosis.
    Lee JE; Park HJ; Lee SY; Lee YT; Kim YB; Lee KH; Shin H; Kwon YJ
    J Comput Assist Tomogr; 2017; 41(6):926-930. PubMed ID: 28481805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.