These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 37233781)
21. GIGANTEA accelerates wheat heading time through gene interactions converging on FLOWERING LOCUS T1. Li C; Lin H; Debernardi JM; Zhang C; Dubcovsky J Plant J; 2024 Apr; 118(2):519-533. PubMed ID: 38184778 [TBL] [Abstract][Full Text] [Related]
22. Allelic variation at the VERNALIZATION-A1, VRN-B1, VRN-B3, and PHOTOPERIOD-A1 genes in cultivars of Triticum durum Desf. Muterko A; Kalendar R; Salina E Planta; 2016 Dec; 244(6):1253-1263. PubMed ID: 27522649 [TBL] [Abstract][Full Text] [Related]
23. Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Wang G; Schmalenbach I; von Korff M; Léon J; Kilian B; Rode J; Pillen K Theor Appl Genet; 2010 May; 120(8):1559-74. PubMed ID: 20155245 [TBL] [Abstract][Full Text] [Related]
24. A three-component system incorporating Ppd-D1, copy number variation at Ppd-B1, and numerous small-effect quantitative trait loci facilitates adaptation of heading time in winter wheat cultivars of worldwide origin. Würschum T; Langer SM; Longin CFH; Tucker MR; Leiser WL Plant Cell Environ; 2018 Jun; 41(6):1407-1416. PubMed ID: 29480543 [TBL] [Abstract][Full Text] [Related]
25. Allele frequencies in the Kiss T; Balla K; Veisz O; Láng L; Bedő Z; Griffiths S; Isaac P; Karsai I Mol Breed; 2014; 34(2):297-310. PubMed ID: 25076837 [TBL] [Abstract][Full Text] [Related]
26. Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat. Nguyen AT; Iehisa JC; Mizuno N; Nitta M; Nasuda S; Takumi S Breed Sci; 2013 Dec; 63(4):374-83. PubMed ID: 24399909 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of the Allelic Variations in Vernalisation ( Palomino C; Cabrera A Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003231 [TBL] [Abstract][Full Text] [Related]
28. Molecular characterization of vernalization response genes in Canadian spring wheat. Iqbal M; Navabi A; Yang RC; Salmon DF; Spaner D Genome; 2007 May; 50(5):511-6. PubMed ID: 17612620 [TBL] [Abstract][Full Text] [Related]
29. Identification of the causal mutation in early heading mutant of bread wheat ( Komura S; Yoshida K; Jinno H; Oono Y; Handa H; Takumi S; Kobayashi F Mol Breed; 2024 Jun; 44(6):41. PubMed ID: 38779634 [TBL] [Abstract][Full Text] [Related]
30. Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. Zhang K; Tian J; Zhao L; Liu B; Chen G Genetica; 2009 Apr; 135(3):257-65. PubMed ID: 18500653 [TBL] [Abstract][Full Text] [Related]
31. Genetic loci in the photoperiod pathway interactively modulate reproductive development of winter wheat. Wang S; Carver B; Yan L Theor Appl Genet; 2009 May; 118(7):1339-49. PubMed ID: 19234853 [TBL] [Abstract][Full Text] [Related]
32. The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature. Allard V; Veisz O; Kõszegi B; Rousset M; Le Gouis J; Martre P J Exp Bot; 2012 Jan; 63(2):847-57. PubMed ID: 21994169 [TBL] [Abstract][Full Text] [Related]
33. EARLY FLOWERING 3 interactions with PHYTOCHROME B and PHOTOPERIOD1 are critical for the photoperiodic regulation of wheat heading time. Alvarez MA; Li C; Lin H; Joe A; Padilla M; Woods DP; Dubcovsky J PLoS Genet; 2023 May; 19(5):e1010655. PubMed ID: 37163495 [TBL] [Abstract][Full Text] [Related]
34. Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. Shaw LM; Li C; Woods DP; Alvarez MA; Lin H; Lau MY; Chen A; Dubcovsky J PLoS Genet; 2020 Jul; 16(7):e1008812. PubMed ID: 32658893 [TBL] [Abstract][Full Text] [Related]
35. Gene Mapping and Identification of a Missense Mutation in One Copy of Xue Q; Xiong H; Zhou C; Guo H; Zhao L; Xie Y; Gu J; Zhao S; Ding Y; Xu L; Liu L Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902439 [TBL] [Abstract][Full Text] [Related]
36. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). Díaz A; Zikhali M; Turner AS; Isaac P; Laurie DA PLoS One; 2012; 7(3):e33234. PubMed ID: 22457747 [TBL] [Abstract][Full Text] [Related]
37. Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection. Nishimura K; Handa H; Mori N; Kawaura K; Kitajima A; Nakazaki T Planta; 2021 May; 253(6):132. PubMed ID: 34059984 [TBL] [Abstract][Full Text] [Related]
38. Investigating the genetic control of plant development in spring barley under speed breeding conditions. Rossi N; Powell W; Mackay IJ; Hickey L; Maurer A; Pillen K; Halliday K; Sharma R Theor Appl Genet; 2024 Apr; 137(5):115. PubMed ID: 38691245 [TBL] [Abstract][Full Text] [Related]
39. Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. Bogard M; Ravel C; Paux E; Bordes J; Balfourier F; Chapman SC; Le Gouis J; Allard V J Exp Bot; 2014 Nov; 65(20):5849-65. PubMed ID: 25148833 [TBL] [Abstract][Full Text] [Related]
40. Genetic Mapping Reveals Broader Role of Vrn-H3 Gene in Root and Shoot Development beyond Heading in Barley. Arifuzzaman M; Günal S; Bungartz A; Muzammil S; P Afsharyan N; Léon J; Naz AA PLoS One; 2016; 11(7):e0158718. PubMed ID: 27442506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]