These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37233805)
1. Exceeding 80% Efficiency of Single-Bead Encapsulation in Microdroplets through Hydrogel Coating-Assisted Close-Packed Ordering. Chen L; Zhao Y; Li J; Xiong C; Xu Y; Tang C; Zhang R; Zhang J; Mi X; Liu Y Anal Chem; 2023 Jun; 95(23):8889-8897. PubMed ID: 37233805 [TBL] [Abstract][Full Text] [Related]
2. High throughput single-cell and multiple-cell micro-encapsulation. Lagus TP; Edd JF J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254 [TBL] [Abstract][Full Text] [Related]
3. Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing. Moon HS; Je K; Min JW; Park D; Han KY; Shin SH; Park WY; Yoo CE; Kim SH Lab Chip; 2018 Feb; 18(5):775-784. PubMed ID: 29423464 [TBL] [Abstract][Full Text] [Related]
4. Breaking through the Poisson Distribution: A compact high-efficiency droplet microfluidic system for single-bead encapsulation and digital immunoassay detection. Yue X; Fang X; Sun T; Yi J; Kuang X; Guo Q; Wang Y; Gu H; Xu H Biosens Bioelectron; 2022 Sep; 211():114384. PubMed ID: 35609455 [TBL] [Abstract][Full Text] [Related]
5. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis. Zhu Z; Yang CJ Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779 [TBL] [Abstract][Full Text] [Related]
6. Dean Flow Assisted Single Cell and Bead Encapsulation for High Performance Single Cell Expression Profiling. Li L; Wu P; Luo Z; Wang L; Ding W; Wu T; Chen J; He J; He Y; Wang H; Chen Y; Li G; Li Z; He L ACS Sens; 2019 May; 4(5):1299-1305. PubMed ID: 31046240 [TBL] [Abstract][Full Text] [Related]
7. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Wu L; Chen P; Dong Y; Feng X; Liu BF Biomed Microdevices; 2013 Jun; 15(3):553-60. PubMed ID: 23404263 [TBL] [Abstract][Full Text] [Related]
8. An Integrated Dielectrophoresis-Trapping and Nanowell Transfer Approach to Enable Double-Sub-Poisson Single-Cell RNA Sequencing. Bai Z; Deng Y; Kim D; Chen Z; Xiao Y; Fan R ACS Nano; 2020 Jun; 14(6):7412-7424. PubMed ID: 32437127 [TBL] [Abstract][Full Text] [Related]
9. Dynamic video recognition for cell-encapsulating microfluidic droplets. Mao Y; Zhou X; Hu W; Yang W; Cheng Z Analyst; 2024 Mar; 149(7):2147-2160. PubMed ID: 38441128 [TBL] [Abstract][Full Text] [Related]
11. Label-free active single-cell encapsulation enabled by microvalve-based on-demand droplet generation and real-time image processing. Wang Y; Wang Y; Wang X; Sun W; Yang F; Yao X; Pan T; Li B; Chu J Talanta; 2024 Aug; 276():126299. PubMed ID: 38788384 [TBL] [Abstract][Full Text] [Related]
12. A Microfluidic System for One-Chip Harvesting of Single-Cell-Laden Hydrogels in Culture Medium. Nan L; Yang Z; Lyu H; Lau KYY; Shum HC Adv Biosyst; 2019 Nov; 3(11):e1900076. PubMed ID: 32648695 [TBL] [Abstract][Full Text] [Related]
13. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices. Kamalakshakurup G; Lee AP Lab Chip; 2017 Dec; 17(24):4324-4333. PubMed ID: 29138790 [TBL] [Abstract][Full Text] [Related]
14. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis. Wen N; Zhao Z; Fan B; Chen D; Men D; Wang J; Chen J Molecules; 2016 Jul; 21(7):. PubMed ID: 27399651 [TBL] [Abstract][Full Text] [Related]
15. Single-cell barcoding and sequencing using droplet microfluidics. Zilionis R; Nainys J; Veres A; Savova V; Zemmour D; Klein AM; Mazutis L Nat Protoc; 2017 Jan; 12(1):44-73. PubMed ID: 27929523 [TBL] [Abstract][Full Text] [Related]
16. A valve-based microfluidic device for on-chip single cell treatments. Sun Y; Cai B; Wei X; Wang Z; Rao L; Meng QF; Liao Q; Liu W; Guo S; Zhao X Electrophoresis; 2019 Mar; 40(6):961-968. PubMed ID: 30155963 [TBL] [Abstract][Full Text] [Related]
17. A facile single-cell patterning strategy based on harbor-like microwell microfluidics. Sun Y; Liu Y; Sun D; Liu K; Li Y; Liu Y; Zhang S Biomed Mater; 2024 May; 19(4):. PubMed ID: 38772387 [TBL] [Abstract][Full Text] [Related]
18. High throughput single cell counting in droplet-based microfluidics. Lu H; Caen O; Vrignon J; Zonta E; El Harrak Z; Nizard P; Baret JC; Taly V Sci Rep; 2017 May; 7(1):1366. PubMed ID: 28465615 [TBL] [Abstract][Full Text] [Related]
19. Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using traveling surface acoustic waves in a microfluidic device. Mutafopulos K; Lu PJ; Garry R; Spink P; Weitz DA Lab Chip; 2020 Nov; 20(21):3914-3921. PubMed ID: 32966482 [TBL] [Abstract][Full Text] [Related]
20. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device. Schoeman RM; Kemna EW; Wolbers F; van den Berg A Electrophoresis; 2014 Feb; 35(2-3):385-92. PubMed ID: 23856757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]