These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37233805)
21. Single-Cell Isolation Microfluidic Chip Based on Thermal Bubble Micropump Technology. Xu C; Wang K; Huang P; Liu D; Guan Y Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050683 [TBL] [Abstract][Full Text] [Related]
22. Efficient multi-gene expression in cell-free droplet microreactors. Sierra AMR; Arold ST; Grünberg R PLoS One; 2022; 17(3):e0260420. PubMed ID: 35312702 [TBL] [Abstract][Full Text] [Related]
23. High-Throughput Single-Cell, Single-Mitochondrial DNA Assay Using Hydrogel Droplet Microfluidics. Park J; Kadam PS; Atiyas Y; Chhay B; Tsourkas A; Eberwine JH; Issadore DA Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202401544. PubMed ID: 38470412 [TBL] [Abstract][Full Text] [Related]
24. Improving single-cell transcriptome sequencing efficiency with a microfluidic phase-switch device. Zhang B; Xu H; Huang Y; Shu W; Feng H; Cai J; Zhong JF; Chen Y Analyst; 2019 Dec; 144(24):7185-7191. PubMed ID: 31688860 [TBL] [Abstract][Full Text] [Related]
25. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Witters D; Knez K; Ceyssens F; Puers R; Lammertyn J Lab Chip; 2013 Jun; 13(11):2047-54. PubMed ID: 23609603 [TBL] [Abstract][Full Text] [Related]
26. Microfluidic bead encapsulation above 20 kHz with triggered drop formation. Clark IC; Abate AR Lab Chip; 2018 Dec; 18(23):3598-3605. PubMed ID: 30362490 [TBL] [Abstract][Full Text] [Related]
27. Microfluidic device for the high-throughput and selective encapsulation of single target cells. Nakamura M; Matsumoto M; Ito T; Hidaka I; Tatsuta H; Katsumoto Y Lab Chip; 2024 May; 24(11):2958-2967. PubMed ID: 38722067 [TBL] [Abstract][Full Text] [Related]
28. Rapid parallel generation of a fluorescently barcoded drop library from a microtiter plate using the plate-interfacing parallel encapsulation (PIPE) chip. Zath GK; Sperling RA; Hoffman CW; Bikos DA; Abbasi R; Abate AR; Weitz DA; Chang CB Lab Chip; 2022 Nov; 22(23):4735-4745. PubMed ID: 36367139 [TBL] [Abstract][Full Text] [Related]
29. Fabrication of a microfluidic device for studying the in situ drug-loading/release behavior of graphene oxide-encapsulated hydrogel beads. Veerla SC; Kim DR; Yang SY Biomater Res; 2018; 22():7. PubMed ID: 29564150 [TBL] [Abstract][Full Text] [Related]
30. Rapid purification of cell encapsulated hydrogel beads from oil phase to aqueous phase in a microfluidic device. Deng Y; Zhang N; Zhao L; Yu X; Ji X; Liu W; Guo S; Liu K; Zhao XZ Lab Chip; 2011 Dec; 11(23):4117-21. PubMed ID: 22012540 [TBL] [Abstract][Full Text] [Related]
31. Hierarchical hydrogel microarrays fabricated based on a microfluidic printing platform for high-throughput screening of stem cell lineage specification. Yu N; Zhang F; Tang X; Liu Y; Zhang J; Yang B; Wang Q Acta Biomater; 2023 Apr; 161():144-153. PubMed ID: 36868445 [TBL] [Abstract][Full Text] [Related]
32. Vessel-on-a-chip with Hydrogel-based Microfluidics. Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698 [TBL] [Abstract][Full Text] [Related]
33. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Sista RS; Eckhardt AE; Srinivasan V; Pollack MG; Palanki S; Pamula VK Lab Chip; 2008 Dec; 8(12):2188-96. PubMed ID: 19023486 [TBL] [Abstract][Full Text] [Related]
34. Label-Free On-Chip Selective Extraction of Cell-Aggregate-Laden Microcapsules from Oil into Aqueous Solution with Optical Sensor and Dielectrophoresis. Sun M; Durkin P; Li J; Toth TL; He X ACS Sens; 2018 Feb; 3(2):410-417. PubMed ID: 29299919 [TBL] [Abstract][Full Text] [Related]
35. Formation of Cucurbit[8]uril-Based Supramolecular Hydrogel Beads Using Droplet-Based Microfluidics. Xu X; Appel EA; Liu X; Parker RM; Scherman OA; Abell C Biomacromolecules; 2015 Sep; 16(9):2743-9. PubMed ID: 26256409 [TBL] [Abstract][Full Text] [Related]
36. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation. Wippold JA; Huang C; Stratis-Cullum D; Han A Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327 [TBL] [Abstract][Full Text] [Related]
37. A multifunctional microfluidic platform for generation, trapping and release of droplets in a double laminar flow. Carreras MP; Wang S J Biotechnol; 2017 Jun; 251():106-111. PubMed ID: 28450257 [TBL] [Abstract][Full Text] [Related]
39. Design of an Adhesive Film-Based Microfluidic Device for Alginate Hydrogel-Based Cell Encapsulation. Enck K; Rajan SP; Aleman J; Castagno S; Long E; Khalil F; Hall AR; Opara EC Ann Biomed Eng; 2020 Mar; 48(3):1103-1111. PubMed ID: 31933001 [TBL] [Abstract][Full Text] [Related]
40. Size-based sorting of hydrogel droplets using inertial microfluidics. Li M; van Zee M; Goda K; Di Carlo D Lab Chip; 2018 Aug; 18(17):2575-2582. PubMed ID: 30046787 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]