BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37233933)

  • 1. Research progress and visualization of underground coal fire detection methods.
    Wang T; Wang H; Fang X; Wang G; Chen Y; Xu Z; Qi Q
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):74671-74690. PubMed ID: 37233933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-distance migration law of radon in overburden of abandoned goaf during coal spontaneous combustion.
    Chan Z; Zhou B; Wang J; Lu Z; Yang Q; Dong Z; Dong K
    J Environ Radioact; 2023 Dec; 270():107284. PubMed ID: 37634424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury emission from underground coal fires in the mining goaf of the Wuda Coalfield, China.
    Shan B; Wang G; Cao F; Wu D; Liang W; Sun R
    Ecotoxicol Environ Saf; 2019 Oct; 182():109409. PubMed ID: 31288123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China.
    Kong B; Li Z; Yang Y; Liu Z; Yan D
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23453-23470. PubMed ID: 28924728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Firefighting of subsurface coal fires with comprehensive techniques for detection and control: a case study of the Fukang coal fire in the Xinjiang region of China.
    Tan B; Zhang F; Zhang Q; Wei H; Shao Z
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29570-29584. PubMed ID: 31422530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.
    Lu X; Wang D; Qin B; Tian F; Shi G; Dong S
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18363-71. PubMed ID: 26370817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and safe gas detection from underground coal fire by drone fly over.
    Dunnington L; Nakagawa M
    Environ Pollut; 2017 Oct; 229():139-145. PubMed ID: 28582677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A visual knowledge map analysis of mine fire research based on CiteSpace.
    Wang F; Tan B; Chen Y; Fang X; Jia G; Wang H; Cheng G; Shao Z
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77609-77624. PubMed ID: 35680744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric Mercury Isotope Shifts in Response to Mercury Emissions from Underground Coal Fires.
    Sun R; Cao F; Dai S; Shan B; Qi C; Xu Z; Li P; Liu Y; Zheng W; Chen J
    Environ Sci Technol; 2023 Jun; 57(23):8638-8649. PubMed ID: 37167064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection, extinguishing, and monitoring of a coal fire in Xinjiang, China.
    Shao Z; Jia X; Zhong X; Wang D; Wei J; Wang Y; Chen L
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26603-26616. PubMed ID: 29998446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sources and Assessment of Mercury and Other Heavy Metal Contamination in Soils Surrounding the Wuda Underground Coal Fire Area, Inner Mongolia, China.
    Wang G; Cao F; Shan B; Meng M; Wang W; Sun R
    Bull Environ Contam Toxicol; 2019 Dec; 103(6):828-833. PubMed ID: 31654123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research Status and Development Trend of Coal Spontaneous Combustion Fire and Prevention Technology in China: A Review.
    Liu Y; Wen H; Chen C; Guo J; Jin Y; Zheng X; Cheng X; Li D
    ACS Omega; 2024 May; 9(20):21727-21750. PubMed ID: 38799345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the potential risk of coal fire to local environment: A case study of Daquanhu coal fire, Xinjiang region, China.
    Zeng Q; Dong J; Zhao L
    Sci Total Environ; 2018 Nov; 640-641():1478-1488. PubMed ID: 30021314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of smouldering coal refuse piles: an application in China.
    Shao Z; Wang D; Cao K; Si W; Li Y; Liu J
    Environ Technol; 2020 Sep; 41(23):3105-3118. PubMed ID: 30896338
    [No Abstract]   [Full Text] [Related]  

  • 15. A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application.
    Qin Y; Guo W; Xu H; Song Y; Chen Y; Ma L
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19741-19751. PubMed ID: 34719762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-hazard risk characterization and collaborative control oriented to space in non-coal underground mines.
    Wu M; Hu N; Ye Y; Wang Q; Wang X
    Sci Rep; 2022 Sep; 12(1):16452. PubMed ID: 36180464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing the role of in situ coal fire in greenhouse gases emission in a coalfield using remote sensing data and their dispersion and source apportionment study.
    Swarup Biswal S; Kumar Gorai A
    Environ Monit Assess; 2022 May; 194(6):413. PubMed ID: 35536433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of spontaneous coal combustion tendency using multinomial logistic regression.
    Kursunoglu N; Gogebakan M
    Int J Occup Saf Ergon; 2022 Dec; 28(4):2000-2009. PubMed ID: 34144657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Appraisal of carbon monoxide emission at surface due to long standing underground fires in Jharia coalfield, India.
    Prakash A; Singh G; Singh KB
    J Environ Sci Eng; 2009 Apr; 51(2):107-10. PubMed ID: 21114163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on the technology of detection and risk assessment of fire areas in gangue hills.
    Wang H; Tan B; Zhang X
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):38776-38787. PubMed ID: 32632694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.