These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37234191)

  • 1. Cerebrovascular Impedance as a Function of Cerebral Perfusion Pressure.
    Yang J; Acharya D; Scammon WB; Schmitt S; Crane EC; Smith MA; Kainerstorfer JM
    IEEE Open J Eng Med Biol; 2023; 4():96-101. PubMed ID: 37234191
    [No Abstract]   [Full Text] [Related]  

  • 2. Cerebrovascular impedance estimation with near-infrared and diffuse correlation spectroscopy.
    Yang J; Ruesch A; Kainerstorfer JM
    Neurophotonics; 2023 Jan; 10(1):015002. PubMed ID: 36699625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral blood flow and cerebrovascular autoregulation in a swine model of pediatric cardiac arrest and hypothermia.
    Lee JK; Brady KM; Mytar JO; Kibler KK; Carter EL; Hirsch KG; Hogue CW; Easley RB; Jordan LC; Smielewski P; Czosnyka M; Shaffner DH; Koehler RC
    Crit Care Med; 2011 Oct; 39(10):2337-45. PubMed ID: 21705904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duration and magnitude of blood pressure below cerebral autoregulation threshold during cardiopulmonary bypass is associated with major morbidity and operative mortality.
    Ono M; Brady K; Easley RB; Brown C; Kraut M; Gottesman RF; Hogue CW
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):483-9. PubMed ID: 24075467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing impact of perinatal inflammation on cerebral autoregulation in preterm neonates: evaluation of a noninvasive method.
    Hahn GH
    Dan Med J; 2013 Apr; 60(4):B4628. PubMed ID: 23651728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature.
    Kooi EMW; Verhagen EA; Elting JWJ; Czosnyka M; Austin T; Wong FY; Aries MJH
    Expert Rev Neurother; 2017 Aug; 17(8):801-818. PubMed ID: 28639837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Detection of changes in cerebral blood flow and cerebrovascular autoregulation by near-infrared spectroscopy in newborn piglets].
    Huang HJ; Shao XM; Cheng GQ
    Zhonghua Er Ke Za Zhi; 2007 May; 45(5):349-53. PubMed ID: 17697620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between Cerebral Hemodynamic and Perfusion Pressure Changes in Non-Human Primates.
    Ruesch A; Smith MA; Wollstein G; Sigal IA; Nelson S; Kainerstorfer JM
    Proc SPIE Int Soc Opt Eng; 2017 Feb; 10059():. PubMed ID: 29311754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral Autoregulation-Guided Optimal Blood Pressure in Sepsis-Associated Encephalopathy: A Case Series.
    Rosenblatt K; Walker KA; Goodson C; Olson E; Maher D; Brown CH; Nyquist P
    J Intensive Care Med; 2020 Dec; 35(12):1453-1464. PubMed ID: 30760173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients.
    Selb J; Wu KC; Sutin J; Lin PI; Farzam P; Bechek S; Shenoy A; Patel AB; Boas DA; Franceschini MA; Rosenthal ES
    Neurophotonics; 2018 Oct; 5(4):045005. PubMed ID: 30450363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations.
    Elting JWJ; Tas J; Aries MJ; Czosnyka M; Maurits NM
    J Cereb Blood Flow Metab; 2020 Jan; 40(1):135-149. PubMed ID: 30353763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Invasive Respiratory Impedance Enhances Cerebral Perfusion in Healthy Adults.
    Favilla CG; Parthasarathy AB; Detre JA; Yodh AG; Mullen MT; Kasner SE; Gannon K; Messé SR
    Front Neurol; 2017; 8():45. PubMed ID: 28261153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring cerebral autoregulation after brain injury: multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy.
    Highton D; Ghosh A; Tachtsidis I; Panovska-Griffiths J; Elwell CE; Smith M
    Anesth Analg; 2015 Jul; 121(1):198-205. PubMed ID: 25993387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution perioperative cerebral blood flow autoregulation measurement: a practical and feasible approach for widespread clinical monitoring.
    Vu EL; Brady K; Hogue CW
    Br J Anaesth; 2022 Mar; 128(3):405-408. PubMed ID: 34996592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trans-Ocular Brain Impedance Indices Predict Pressure Reactivity Index Changes in a Porcine Model of Hypotension and Cerebral Autoregulation Perturbation.
    Tiba MH; McCracken BM; Leander DC; Colmenero Mahmood CI; Greer NL; Picton P; Williamson CA; Ward KR
    Neurocrit Care; 2022 Feb; 36(1):139-147. PubMed ID: 34244920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the Upper and Lower Limits of Cerebral Autoregulation With Cerebral Oximetry Autoregulation Curves: A Case Series.
    Rivera-Lara L; Zorrilla-Vaca A; Healy RJ; Ziai W; Hogue C; Geocadin R; Radzik B; Palmisano C; Mirski MA
    Crit Care Med; 2018 May; 46(5):e473-e477. PubMed ID: 29419556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring cerebral blood flow pressure autoregulation in pediatric patients during cardiac surgery.
    Brady KM; Mytar JO; Lee JK; Cameron DE; Vricella LA; Thompson WR; Hogue CW; Easley RB
    Stroke; 2010 Sep; 41(9):1957-62. PubMed ID: 20651273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive Monitoring of Dynamic Cerebrovascular Autoregulation Using Near Infrared Spectroscopy and the Finometer Photoplethysmograph.
    Bindra J; Pham P; Aneman A; Chuan A; Jaeger M
    Neurocrit Care; 2016 Jun; 24(3):442-7. PubMed ID: 26490778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying the optimal blood pressure for cerebral autoregulation in infants after cardiac surgery by monitoring cerebrovascular reactivity-A pilot study.
    Zipfel J; Wikidal B; Schwaneberg B; Schuhmann MU; Magunia H; Hofbeck M; Schlensak C; Schmid S; Neunhoeffer F
    Paediatr Anaesth; 2022 Dec; 32(12):1320-1329. PubMed ID: 36083106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired cerebral autoregulation and elevation in plasma glial fibrillary acidic protein level during cardiopulmonary bypass surgery for CHD.
    Easley RB; Marino BS; Jennings J; Cassedy AE; Kibler KK; Brady KM; Andropoulos DB; Brunetti M; Hogue CW; Heitmiller ES; Lee JK; Spaeth J; Everett AD
    Cardiol Young; 2018 Jan; 28(1):55-65. PubMed ID: 28835309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.