These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37234649)

  • 1. Water-related limits to growth for agriculture in Iran.
    Khorsandi M; Omidi T; van Oel P
    Heliyon; 2023 May; 9(5):e16132. PubMed ID: 37234649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional water footprint assessment for a semi-arid basin in India.
    Mehla MK
    PeerJ; 2022; 10():e14207. PubMed ID: 36225910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.
    Shtull-Trauring E; Bernstein N
    Sci Total Environ; 2018 May; 622-623():1438-1447. PubMed ID: 29890609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series.
    Behling R; Roessner S; Foerster S; Saemian P; Tourian MJ; Portele TC; Lorenz C
    Sci Rep; 2022 Dec; 12(1):20784. PubMed ID: 36456635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Socioeconomic benefits of conserving Iran's water resources through modifying agricultural practices and water management strategies.
    Karandish F
    Ambio; 2021 Oct; 50(10):1824-1840. PubMed ID: 33759107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive analysis of water resources from the perspective of water footprint and water ecological footprint: a case study from Anyang City, China.
    Ma X; Jiao S
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):2086-2102. PubMed ID: 35930150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of virtual water flows in agriculture by changing cropping patterns using an integrated approach.
    Mehla MK; Kothari M; Singh PK; Bhakar SR; Yadav KK
    Heliyon; 2023 Dec; 9(12):e22603. PubMed ID: 38076115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based water accounting for integrated assessment of water resources systems at the basin scale.
    Delavar M; Eini MR; Kuchak VS; Zaghiyan MR; Shahbazi A; Nourmohammadi F; Motamedi A
    Sci Total Environ; 2022 Jul; 830():154810. PubMed ID: 35341867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Water-Withdrawal Input-Output Model of the Indian Economy.
    Bogra S; Bakshi BR; Mathur R
    Environ Sci Technol; 2016 Feb; 50(3):1313-21. PubMed ID: 26736016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards quantification of the national water footprint in rice production of China: A first assessment from the perspectives of single-double rice.
    Zheng J; Wang W; Liu G; Ding Y; Cao X; Chen D; Engel BA
    Sci Total Environ; 2020 Oct; 739():140032. PubMed ID: 32758949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The water footprint of humanity.
    Hoekstra AY; Mekonnen MM
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3232-7. PubMed ID: 22331890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.
    Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P
    Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthropogenic depletion of Iran's aquifers.
    Noori R; Maghrebi M; Mirchi A; Tang Q; Bhattarai R; Sadegh M; Noury M; Torabi Haghighi A; Kløve B; Madani K
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating High Resolution Water Footprint and GIS for Promoting Water Efficiency in the Agricultural Sector: A Case Study of Plantation Crops in the Jordan Valley.
    Shtull-Trauring E; Aviani I; Avisar D; Bernstein N
    Front Plant Sci; 2016; 7():1877. PubMed ID: 28018408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research progress on water footprint in agricultural products].
    Lu Y; Liu XW; Zhang XY
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3207-14. PubMed ID: 26995933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing agro-environmental sustainability of intensive agricultural systems.
    Hashemi SZ; Darzi-Naftchali A; Karandish F; Ritzema H; Solaimani K
    Sci Total Environ; 2022 Jul; 831():154994. PubMed ID: 35378191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of urbanization on agricultural water consumption and production: the extended positive mathematical programming approach.
    Avazdahandeh S; Khalilian S
    Environ Geochem Health; 2021 Jan; 43(1):247-258. PubMed ID: 32857235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical production of bioenergy from agricultural crops and residue in Iran.
    Karimi Alavijeh M; Yaghmaei S
    Waste Manag; 2016 Jun; 52():375-94. PubMed ID: 27012716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of agricultural water consumption from meteorological and yield data: a case study of Hebei, North China.
    Yuan Z; Shen Y
    PLoS One; 2013; 8(3):e58685. PubMed ID: 23516537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.