BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 37235028)

  • 1. Genetic resources and breeding of maize for
    Dossa EN; Shimelis H; Mrema E; Shayanowako ATI; Laing M
    Front Plant Sci; 2023; 14():1163785. PubMed ID: 37235028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic dissection of Striga hermonthica (Del.) Benth. resistance via genome-wide association and genomic prediction in tropical maize germplasm.
    Gowda M; Makumbi D; Das B; Nyaga C; Kosgei T; Crossa J; Beyene Y; Montesinos-López OA; Olsen MS; Prasanna BM
    Theor Appl Genet; 2021 Mar; 134(3):941-958. PubMed ID: 33388884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of QTLs for grain yield and other traits in tropical maize under Striga infestation.
    Badu-Apraku B; Adewale S; Paterne AA; Gedil M; Toyinbo J; Asiedu R
    PLoS One; 2020; 15(9):e0239205. PubMed ID: 32925954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breeding maize (
    Yacoubou AM; Zoumarou Wallis N; Menkir A; Zinsou VA; Onzo A; Garcia-Oliveira AL; Meseka S; Wende M; Gedil M; Agre P
    Plant Breed; 2021 Apr; 140(2):195-210. PubMed ID: 34239217
    [No Abstract]   [Full Text] [Related]  

  • 5. Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines.
    Adewale SA; Badu-Apraku B; Akinwale RO; Paterne AA; Gedil M; Garcia-Oliveira AL
    BMC Plant Biol; 2020 May; 20(1):203. PubMed ID: 32393176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association analysis for resistance to Striga hermonthica in diverse tropical maize inbred lines.
    Stanley AE; Menkir A; Ifie B; Paterne AA; Unachukwu NN; Meseka S; Mengesha WA; Bossey B; Kwadwo O; Tongoona PB; Oladejo O; Sneller C; Gedil M
    Sci Rep; 2021 Dec; 11(1):24193. PubMed ID: 34921181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Striga infestation of cereal crops - an unsolved problem in resource limited agriculture.
    Scholes JD; Press MC
    Curr Opin Plant Biol; 2008 Apr; 11(2):180-6. PubMed ID: 18337158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance.
    Badu-Apraku B; Talabi AO; Fakorede MAB; Fasanmade Y; Gedil M; Magorokosho C; Asiedu R
    BMC Plant Biol; 2019 Apr; 19(1):129. PubMed ID: 30953477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide association studies of Striga resistance in extra-early maturing quality protein maize inbred lines.
    Okunlola G; Badu-Apraku B; Ariyo O; Agre P; Offernedo Q; Ayo-Vaughan M
    G3 (Bethesda); 2023 Feb; 13(2):. PubMed ID: 36073937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping quantitative trait loci and predicting candidate genes for
    Badu-Apraku B; Adewale S; Paterne A; Offornedo Q; Gedil M
    Front Genet; 2023; 14():1012460. PubMed ID: 36713079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Management Options on Striga Infestation and Maize Grain Yield in Kenya.
    Kanampiu F; Makumbi D; Mageto E; Omanya G; Waruingi S; Musyoka P; Ransom J
    Weed Sci; 2018; 66(4):516-524. PubMed ID: 33583963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards effective resistance to Striga in African maize.
    Rich PJ; Ejeta G
    Plant Signal Behav; 2008 Sep; 3(9):618-21. PubMed ID: 19513251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying suitable tester for evaluating Striga resistant lines using DArTseq markers and agronomic traits.
    Zebire D; Menkir A; Adetimirin V; Mengesha W; Meseka S; Gedil M
    PLoS One; 2021; 16(6):e0253481. PubMed ID: 34143833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erratum: Genetic resources and breeding of maize for
    Frontiers Production Office
    Front Plant Sci; 2023; 14():1254773. PubMed ID: 37546252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa.
    Gedil M; Menkir A
    Front Plant Sci; 2019; 10():1430. PubMed ID: 31781144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Association Studies for
    Pfunye A; Rwafa R; Mabasa S; Gasura E
    Int J Genomics; 2021; 2021():9979146. PubMed ID: 34239920
    [No Abstract]   [Full Text] [Related]  

  • 17. Combining ability of extra-early maturing pro-vitamin A maize (Zea mays L.) inbred lines and performance of derived hybrids under Striga hermonthica infestation and low soil nitrogen.
    Makinde SA; Badu-Apraku B; Ariyo OJ; Porbeni JB
    PLoS One; 2023; 18(2):e0280814. PubMed ID: 36827415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic-based-breeding tools for tropical maize improvement.
    Chakradhar T; Hindu V; Reddy PS
    Genetica; 2017 Dec; 145(6):525-539. PubMed ID: 28875394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxamic acids: New players in the multifactorial mechanisms of maize resistance to Striga hermonthica.
    Marcotrigiano AR; Carluccio AV; Unachukwu N; Adeoti SR; Abdulsalam T; Gedil M; Menkir A; Gisel A; Stavolone L
    Plant Physiol Biochem; 2023 Nov; 204():108134. PubMed ID: 37883916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives.
    Boukar O; Fatokun CA; Huynh BL; Roberts PA; Close TJ
    Front Plant Sci; 2016; 7():757. PubMed ID: 27375632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.