These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37235799)
1. An Immunologic and Biomechanical Comparison of Polyether Ether Ketone-Zeolite and Polyether Ether Ketone Interbody Fusion Devices. Cheng BC; Swink I; McClain EJ; Vyas PS; Muzzonigro T; Carbone J; Zaidi A; Long JD; Altman DT; Yu AK Spine (Phila Pa 1976); 2023 Aug; 48(16):1174-1180. PubMed ID: 37235799 [TBL] [Abstract][Full Text] [Related]
2. Early bone ingrowth and segmental stability of a trussed titanium cage versus a polyether ether ketone cage in an ovine lumbar interbody fusion model. Loenen ACY; Peters MJM; Bevers RTJ; Schaffrath C; van Haver E; Cuijpers VMJI; Rademakers T; van Rietbergen B; Willems PC; Arts JJ Spine J; 2022 Jan; 22(1):174-182. PubMed ID: 34274502 [TBL] [Abstract][Full Text] [Related]
4. Effects of Surface Topography and Chemistry on Polyether-Ether-Ketone (PEEK) and Titanium Osseointegration. Torstrick FB; Lin ASP; Safranski DL; Potter D; Sulchek T; Lee CSD; Gall K; Guldberg RE Spine (Phila Pa 1976); 2020 Apr; 45(8):E417-E424. PubMed ID: 31703050 [TBL] [Abstract][Full Text] [Related]
5. PEEK Versus Ti Interbody Fusion Devices: Resultant Fusion, Bone Apposition, Initial and 26-Week Biomechanics. Pelletier MH; Cordaro N; Punjabi VM; Waites M; Lau A; Walsh WR Clin Spine Surg; 2016 May; 29(4):E208-14. PubMed ID: 22801456 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a polyetheretherketone (PEEK) titanium composite interbody spacer in an ovine lumbar interbody fusion model: biomechanical, microcomputed tomographic, and histologic analyses. McGilvray KC; Waldorff EI; Easley J; Seim HB; Zhang N; Linovitz RJ; Ryaby JT; Puttlitz CM Spine J; 2017 Dec; 17(12):1907-1916. PubMed ID: 28751242 [TBL] [Abstract][Full Text] [Related]
7. The in vivo response to a novel Ti coating compared with polyether ether ketone: evaluation of the periphery and inner surfaces of an implant. Walsh WR; Pelletier MH; Christou C; He J; Vizesi F; Boden SD Spine J; 2018 Jul; 18(7):1231-1240. PubMed ID: 29496625 [TBL] [Abstract][Full Text] [Related]
8. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. McGilvray KC; Easley J; Seim HB; Regan D; Berven SH; Hsu WK; Mroz TE; Puttlitz CM Spine J; 2018 Jul; 18(7):1250-1260. PubMed ID: 29496624 [TBL] [Abstract][Full Text] [Related]
9. 3D-printed titanium cages without bone graft outperform PEEK cages with autograft in an animal model. Laratta JL; Vivace BJ; López-Peña M; Guzón FM; Gonzalez-Cantalpeidra A; Jorge-Mora A; Villar-Liste RM; Pino-Lopez L; Lukyanchuk A; Taghizadeh EA; Pino-Minguez J Spine J; 2022 Jun; 22(6):1016-1027. PubMed ID: 34906741 [TBL] [Abstract][Full Text] [Related]
10. Does PEEK/HA Enhance Bone Formation Compared With PEEK in a Sheep Cervical Fusion Model? Walsh WR; Pelletier MH; Bertollo N; Christou C; Tan C Clin Orthop Relat Res; 2016 Nov; 474(11):2364-2372. PubMed ID: 27549990 [TBL] [Abstract][Full Text] [Related]
11. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Wu SH; Li Y; Zhang YQ; Li XK; Yuan CF; Hao YL; Zhang ZY; Guo Z Artif Organs; 2013 Dec; 37(12):E191-201. PubMed ID: 24147953 [TBL] [Abstract][Full Text] [Related]
12. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477 [TBL] [Abstract][Full Text] [Related]
13. An investigational time course study of titanium plasma spray on osseointegration of PEEK and titanium implants: an in vivo ovine model. Cunningham BW; Brooks DM; Rolle NP; Weiner DA; Wang W Spine J; 2024 Apr; 24(4):721-729. PubMed ID: 37875243 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a lumbar intervertebral spacer with integrated screws as a stand-alone fixation device. Beaubien BP; Freeman AL; Turner JL; Castro CA; Armstrong WD; Waugh LG; Dryer RF J Spinal Disord Tech; 2010 Jul; 23(5):351-8. PubMed ID: 20084028 [TBL] [Abstract][Full Text] [Related]
15. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model. Van Horn MR; Beard R; Wang W; Cunningham BW; Mullinix KP; Allall M; Bucklen BS Spine J; 2021 Dec; 21(12):2097-2103. PubMed ID: 34029756 [TBL] [Abstract][Full Text] [Related]
17. Can Polyether Ether Ketone Dethrone Titanium as the Choice Implant Material for Metastatic Spine Tumor Surgery? Kumar N; Ramakrishnan SA; Lopez KG; Madhu S; Ramos MRD; Fuh JYH; Hallinan J; Nolan CP; Benneker LM; Vellayappan BA World Neurosurg; 2021 Apr; 148():94-109. PubMed ID: 33508491 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of surface bioactivity on carbon fiber-reinforced polyether ether ketone via graphene modification. Yan JH; Wang CH; Li KW; Zhang Q; Yang M; Di-Wu WL; Yan M; Song Y; Ba JJ; Bi L; Han YS Int J Nanomedicine; 2018; 13():3425-3440. PubMed ID: 29942128 [TBL] [Abstract][Full Text] [Related]
19. MIS Expandable Interbody Spacers: A Literature Review and Biomechanical Comparison of an Expandable MIS TLIF With Conventional TLIF and ALIF. Cannestra AF; Peterson MD; Parker SR; Roush TF; Bundy JV; Turner AW Spine (Phila Pa 1976); 2016 Apr; 41 Suppl 8():S44-9. PubMed ID: 26825792 [TBL] [Abstract][Full Text] [Related]