BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 3723592)

  • 1. Mechanism of interaction of the cyanine dye diS-C3-(5) with renal brush-border vesicles.
    Cabrini G; Verkman AS
    J Membr Biol; 1986; 90(2):163-75. PubMed ID: 3723592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential-sensitive response mechanism of diS-C3-(5) in biological membranes.
    Cabrini G; Verkman AS
    J Membr Biol; 1986; 92(2):171-82. PubMed ID: 3761361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of cyanine dye binding to brush-border membranes by quenching of n-(9-anthroyloxy) fatty acid probes.
    Cabrini G; Verkman AS
    Biochim Biophys Acta; 1986 Nov; 862(2):285-93. PubMed ID: 3778893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of acridine orange interaction with phospholipids and proteins in renal microvillus vesicles.
    Holmberg EG; Verkman AS; Dix JA
    Biophys Chem; 1989 Jul; 33(3):245-56. PubMed ID: 2804243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of membrane potential changes using the carbocyanine dye, diS-C3-(5): synchronous excitation spectroscopy studies.
    Plásek J; Hrouda V
    Eur Biophys J; 1991; 19(4):183-8. PubMed ID: 2029874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comment on the localization of cyanine dye binding to brush-border membranes by the fluorescence quenching of n-(9-anthroyloxy) fatty acid probes.
    Faria JL; Berberan-Santos M; Prieto MJ
    Biochim Biophys Acta; 1990 Jul; 1026(1):133-4. PubMed ID: 2378877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DiO-C3-(5) and DiS-C3-(5): Interactions with RBC, ghosts and phospholipid vesicles.
    Guillet EG; Kimmich GA
    J Membr Biol; 1981 Mar; 59(1):1-11. PubMed ID: 7241571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of sodium-dependent solute transport by rabbit renal and jejunal brush-border vesicles using a fluorescent dye.
    Schell RE; Stevens BR; Wright EM
    J Physiol; 1983 Feb; 335():307-18. PubMed ID: 6875880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic Measurements of Di- and Tripeptide and Peptidomimetic Drug Transport in Different Kidney Regions Using the Fluorescent Membrane Potential-Sensitive Dye, DiS-C
    Alghamdi OA; King N; Jones GL; Moens PDJ
    J Membr Biol; 2017 Dec; 250(6):641-649. PubMed ID: 28988287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic permeabilities of rat renal cortical brush-border membrane vesicles.
    Lipkowitz MS; Abramson RG
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F700-11. PubMed ID: 3565580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the transmembrane potential of bacterial cells by voltage-sensitive dyes.
    Suzuki H; Wang ZY; Yamakoshi M; Kobayashi M; Nozawa T
    Anal Sci; 2003 Sep; 19(9):1239-42. PubMed ID: 14516073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of fluorescent response of the probe diS-C3-(5) to transmembrane potential changes in a lecithin vesicle suspension.
    Ivkova MN; Pechatnikov VA; Ivkov VG
    Gen Physiol Biophys; 1984 Apr; 3(2):97-117. PubMed ID: 6537363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of a potential-sensitive cyanine dye to rat small intestinal brush border membrane vesicles.
    Stieger B; Burckhardt G; Murer H
    Biochim Biophys Acta; 1983 Jul; 732(1):324-6. PubMed ID: 6871200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of the extrinsic potential-sensitive molecular probe diS-C3-(5) with pigeon heart mitochondria under equilibrium and time-resolved conditions.
    Bammel BP; Brand JA; Germon W; Smith JC
    Arch Biochem Biophys; 1986 Jan; 244(1):67-84. PubMed ID: 3004342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and kinetics of merocyanine 540 binding to phospholipid membranes.
    Verkman AS
    Biochemistry; 1987 Jun; 26(13):4050-6. PubMed ID: 3651436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial membrane potential in lymphocytes as monitored by fluorescent cation diS-C3-(5).
    Gulyaeva NV; Konoshenko GI; Mokhova EN
    Membr Biochem; 1985; 6(1):19-32. PubMed ID: 4033446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the voltage-sensing fluorescent probe diS-C3-(5) with dipalmitoylphosphatidylcholine liposomes.
    Ivkova MN; Pechatnikov VA; Gracheva OA; Pechatnikova EV; Ivkov VG
    Gen Physiol Biophys; 1987 Feb; 6(1):45-55. PubMed ID: 3596225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-phase structure in epithelial cell membranes: comparison of renal brush border and basolateral membranes.
    Illsley NP; Lin HY; Verkman AS
    Biochemistry; 1988 Mar; 27(6):2077-83. PubMed ID: 3378045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the membrane surface charge density and/or membrane potential of the porcine intestinal brush-border membrane vesicles induced by treatment with neuraminidase.
    Ohyashiki T; Taka M; Mohri T
    J Biochem; 1989 Oct; 106(4):584-8. PubMed ID: 2606911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential-sensitive cyanine dye.
    Wright SH; Krasne S; Kippen I; Wright EM
    Biochim Biophys Acta; 1981 Feb; 640(3):767-78. PubMed ID: 7213704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.