These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37236068)

  • 1. Intracellular signaling mechanisms that shape postsynaptic GABAergic synapses.
    Jung H; Kim S; Ko J; Um JW
    Curr Opin Neurobiol; 2023 Aug; 81():102728. PubMed ID: 37236068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABA(A) receptors, gephyrin and homeostatic synaptic plasticity.
    Tyagarajan SK; Fritschy JM
    J Physiol; 2010 Jan; 588(Pt 1):101-6. PubMed ID: 19752109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses.
    Dejanovic B; Semtner M; Ebert S; Lamkemeyer T; Neuser F; Lüscher B; Meier JC; Schwarz G
    PLoS Biol; 2014 Jul; 12(7):e1001908. PubMed ID: 25025157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depolarizing, inhibitory GABA type A receptor activity regulates GABAergic synapse plasticity via ERK and BDNF signaling.
    Brady ML; Pilli J; Lorenz-Guertin JM; Das S; Moon CE; Graff N; Jacob TC
    Neuropharmacology; 2018 Jan; 128():324-339. PubMed ID: 29074304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postsynaptic plasticity of GABAergic synapses.
    Barberis A
    Neuropharmacology; 2020 Jun; 169():107643. PubMed ID: 31108109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAergic and glutamatergic terminals differentially influence the organization of GABAergic synapses in rat cerebellar granule cells in vitro.
    Studler B; Fritschy JM; Brünig I
    Neuroscience; 2002; 114(1):123-33. PubMed ID: 12207960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin.
    Tyagarajan SK; Ghosh H; Yévenes GE; Nikonenko I; Ebeling C; Schwerdel C; Sidler C; Zeilhofer HU; Gerrits B; Muller D; Fritschy JM
    Proc Natl Acad Sci U S A; 2011 Jan; 108(1):379-84. PubMed ID: 21173228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of GABA
    Mele M; Leal G; Duarte CB
    J Neurochem; 2016 Dec; 139(6):997-1018. PubMed ID: 27424566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning GABAergic Inhibition: Gephyrin Molecular Organization and Functions.
    Pizzarelli R; Griguoli M; Zacchi P; Petrini EM; Barberis A; Cattaneo A; Cherubini E
    Neuroscience; 2020 Jul; 439():125-136. PubMed ID: 31356900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gephyrin: where do we stand, where do we go?
    Fritschy JM; Harvey RJ; Schwarz G
    Trends Neurosci; 2008 May; 31(5):257-64. PubMed ID: 18403029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and functional heterogeneity of GABAergic synapses.
    Fritschy JM; Panzanelli P; Tyagarajan SK
    Cell Mol Life Sci; 2012 Aug; 69(15):2485-99. PubMed ID: 22314501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-dependent development of GABAergic synapses.
    Oh WC; Smith KR
    Brain Res; 2019 Mar; 1707():18-26. PubMed ID: 30439352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gephyrin: a master regulator of neuronal function?
    Tyagarajan SK; Fritschy JM
    Nat Rev Neurosci; 2014 Mar; 15(3):141-56. PubMed ID: 24552784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Molecular Reorganization of the Inhibitory Postsynaptic Density Is a Determinant of GABAergic Synaptic Potentiation.
    Pennacchietti F; Vascon S; Nieus T; Rosillo C; Das S; Tyagarajan SK; Diaspro A; Del Bue A; Petrini EM; Barberis A; Cella Zanacchi F
    J Neurosci; 2017 Feb; 37(7):1747-1756. PubMed ID: 28073939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission.
    Ghosh H; Auguadri L; Battaglia S; Simone Thirouin Z; Zemoura K; Messner S; Acuña MA; Wildner H; Yévenes GE; Dieter A; Kawasaki H; O Hottiger M; Zeilhofer HU; Fritschy JM; Tyagarajan SK
    Nat Commun; 2016 Nov; 7():13365. PubMed ID: 27819299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gephyrin clustering is required for the stability of GABAergic synapses.
    Yu W; Jiang M; Miralles CP; Li RW; Chen G; de Blas AL
    Mol Cell Neurosci; 2007 Dec; 36(4):484-500. PubMed ID: 17916433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of the postsynaptic clustering of γ-aminobutyric acid type A (GABAA) receptors by collybistin isoforms.
    Chiou TT; Bonhomme B; Jin H; Miralles CP; Xiao H; Fu Z; Harvey RJ; Harvey K; Vicini S; De Blas AL
    J Biol Chem; 2011 Jun; 286(25):22456-68. PubMed ID: 21540179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin.
    Poulopoulos A; Aramuni G; Meyer G; Soykan T; Hoon M; Papadopoulos T; Zhang M; Paarmann I; Fuchs C; Harvey K; Jedlicka P; Schwarzacher SW; Betz H; Harvey RJ; Brose N; Zhang W; Varoqueaux F
    Neuron; 2009 Sep; 63(5):628-42. PubMed ID: 19755106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gephyrin Interacts with the K-Cl Cotransporter KCC2 to Regulate Its Surface Expression and Function in Cortical Neurons.
    Al Awabdh S; Donneger F; Goutierre M; Séveno M; Vigy O; Weinzettl P; Russeau M; Moutkine I; Lévi S; Marin P; Poncer JC
    J Neurosci; 2022 Jan; 42(2):166-182. PubMed ID: 34810232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction.
    Antonelli R; Pizzarelli R; Pedroni A; Fritschy JM; Del Sal G; Cherubini E; Zacchi P
    Nat Commun; 2014 Oct; 5():5066. PubMed ID: 25297980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.