These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37236202)

  • 1. Role of Curvature-Sensing Proteins in the Uptake of Nanoparticles with Different Mechanical Properties.
    Montizaan D; Saunders C; Yang K; Sasidharan S; Maity S; Reker-Smit C; Stuart MCA; Montis C; Berti D; Roos WH; Salvati A
    Small; 2023 Sep; 19(39):e2303267. PubMed ID: 37236202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native silica nanoparticles are powerful membrane disruptors.
    Alkhammash HI; Li N; Berthier R; de Planque MR
    Phys Chem Chem Phys; 2015 Jun; 17(24):15547-60. PubMed ID: 25623776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-electron tomography of nanoparticle transmigration into liposome.
    Le Bihan O; Bonnafous P; Marak L; Bickel T; Trépout S; Mornet S; De Haas F; Talbot H; Taveau JC; Lambert O
    J Struct Biol; 2009 Dec; 168(3):419-25. PubMed ID: 19596070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corona Composition Can Affect the Mechanisms Cells Use to Internalize Nanoparticles.
    Francia V; Yang K; Deville S; Reker-Smit C; Nelissen I; Salvati A
    ACS Nano; 2019 Oct; 13(10):11107-11121. PubMed ID: 31525954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silica nanoparticle coated liposomes: a new type of hybrid nanocapsule for proteins.
    Mohanraj VJ; Barnes TJ; Prestidge CA
    Int J Pharm; 2010 Jun; 392(1-2):285-93. PubMed ID: 20363300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Uptake and Membrane Curvature Generation for the Internalization of Silica Nanoparticles by Cells.
    Francia V; Reker-Smit C; Salvati A
    Nano Lett; 2022 Apr; 22(7):3118-3124. PubMed ID: 35377663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery.
    Liu J; Jiang X; Ashley C; Brinker CJ
    J Am Chem Soc; 2009 Jun; 131(22):7567-9. PubMed ID: 19445508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane Fusion Mediated Intracellular Delivery of Lipid Bilayer Coated Mesoporous Silica Nanoparticles.
    Yang J; Tu J; Lamers GEM; Olsthoorn RCL; Kros A
    Adv Healthc Mater; 2017 Oct; 6(20):. PubMed ID: 28945015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of liposomes encapsulating silica nanoparticles.
    Baowan D; Peuschel H; Kraegeloh A; Helms V
    J Mol Model; 2013 Jun; 19(6):2459-72. PubMed ID: 23435518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of silica-coated nanoparticles by HeLa cells.
    Xing X; He X; Peng J; Wang K; Tan W
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1688-93. PubMed ID: 16245529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.
    Morton LA; Saludes JP; Yin H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique Calibrators Derived from Fluorescence-Activated Nanoparticle Sorting for Flow Cytometric Size Estimation of Artificial Vesicles: Possibilities and Limitations.
    Simonsen JB; Larsen JB; Hempel C; Eng N; Fossum A; Andresen TL
    Cytometry A; 2019 Aug; 95(8):917-924. PubMed ID: 31120635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sources of variability in nanoparticle uptake by cells.
    Åberg C; Piattelli V; Montizaan D; Salvati A
    Nanoscale; 2021 Oct; 13(41):17530-17546. PubMed ID: 34652349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of temperature-responsive polymer/silica hybrid nanoparticles and application to thermally controlled cellular uptake.
    Hiruta Y; Nemoto R; Kanazawa H
    Colloids Surf B Biointerfaces; 2017 May; 153():2-9. PubMed ID: 28192714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Label-Free Monitoring of Nanoparticle Cell Uptake.
    Suutari T; Silen T; S En Karaman D; Saari H; Desai D; Kerkelä E; Laitinen S; Hanzlikova M; Rosenholm JM; Yliperttula M; Viitala T
    Small; 2016 Dec; 12(45):6289-6300. PubMed ID: 27690329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of calcium carbonate-liposome dual-film coated mesoporous silica as a delayed drug release system for antitumor therapy.
    Wang Y; Zhao K; Xie L; Li K; Zhang W; Xi Z; Wang X; Xia M; Xu L
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112357. PubMed ID: 35101825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilayer-Coated Nanoparticles Reveal How Influenza Viral Entry Depends on Membrane Deformability but Not Curvature.
    Villamil Giraldo AM; Kasson PM
    J Phys Chem Lett; 2020 Sep; 11(17):7190-7196. PubMed ID: 32808796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theranostic Liposome-Nanoparticle Hybrids for Drug Delivery and Bioimaging.
    Seleci M; Ag Seleci D; Scheper T; Stahl F
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28671589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives.
    Cong VT; Gaus K; Tilley RD; Gooding JJ
    Expert Opin Drug Deliv; 2018 Sep; 15(9):881-892. PubMed ID: 30173560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically reducible lipid bilayer coated mesoporous silica nanoparticles demonstrating controlled release and HeLa and normal mouse liver cell biocompatibility and cellular internalization.
    Roggers RA; Lin VS; Trewyn BG
    Mol Pharm; 2012 Sep; 9(9):2770-7. PubMed ID: 22738645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.