BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37236434)

  • 1. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information.
    Yang S; Yang Z; Ni X
    Anal Biochem; 2023 Jul; 673():115196. PubMed ID: 37236434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTPAMP: prediction tool for plant-derived antimicrobial peptides.
    Jaiswal M; Singh A; Kumar S
    Amino Acids; 2023 Jan; 55(1):1-17. PubMed ID: 35864258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure.
    Yan K; Lv H; Guo Y; Peng W; Liu B
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities.
    Pang Y; Yao L; Xu J; Wang Z; Lee TY
    Bioinformatics; 2022 Dec; 38(24):5368-5374. PubMed ID: 36326438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields.
    Chang KY; Lin TP; Shih LY; Wang CK
    PLoS One; 2015; 10(3):e0119490. PubMed ID: 25803302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptides recognition using weighted physicochemical property encoding.
    Na S; Wannigama DL; Saethang T
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding.
    Fu H; Cao Z; Li M; Wang S
    BMC Genomics; 2020 Aug; 21(1):597. PubMed ID: 32859150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types.
    Xiao X; Shao YT; Cheng X; Stamatovic B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tools in the Era of Multidrug Resistance in Bacteria: Applications for New Antimicrobial Peptides Discovery.
    Moretta A; Scieuzo C; Salvia R; Popović ŽD; Sgambato A; Falabella P
    Curr Pharm Des; 2022; 28(35):2856-2866. PubMed ID: 35980058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unifying the classification of antimicrobial peptides in the antimicrobial peptide database.
    Wang G
    Methods Enzymol; 2022; 663():1-18. PubMed ID: 35168785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs.
    Lertampaiporn S; Vorapreeda T; Hongsthong A; Thammarongtham C
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33494403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on antimicrobial peptides databases and the computational tools.
    Ramazi S; Mohammadi N; Allahverdi A; Khalili E; Abdolmaleki P
    Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35305010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel antibacterial peptide recognition algorithm based on BERT.
    Zhang Y; Lin J; Zhao L; Zeng X; Liu X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus.
    Ke T; Cao H; Huang J; Hu F; Huang J; Dong C; Ma X; Yu J; Mao H; Wang X; Niu Q; Hui F; Liu S
    BMC Genomics; 2015 Sep; 16(1):653. PubMed ID: 26330304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic Screening for Prediction and Design of Antimicrobial Peptides with AmpGram.
    Burdukiewicz M; Sidorczuk K; Rafacz D; Pietluch F; Chilimoniuk J; Rödiger S; Gagat P
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Targeting' the search: An upgraded structural and functional repository of antimicrobial peptides for biofilm studies (B-AMP v2.0) with a focus on biofilm protein targets.
    Ravichandran S; Avatapalli S; Narasimhan Y; Kaushik KS; Yennamalli RM
    Front Cell Infect Microbiol; 2022; 12():1020391. PubMed ID: 36329825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data.
    Jhong JH; Chi YH; Li WC; Lin TH; Huang KY; Lee TY
    Nucleic Acids Res; 2019 Jan; 47(D1):D285-D297. PubMed ID: 30380085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.