These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37236565)

  • 1. Regulating mechanical performance of poly (l-lactide acid) stent by the combined effects of heat and aqueous media.
    Liu J; Wang B; Liu W; Hu X; Zhang C; Zhou Z; Lang J; Wu G; Zhang Y; Yang J; Ni Z; Zhao G
    Int J Biol Macromol; 2023 Jul; 242(Pt 4):124987. PubMed ID: 37236565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Key Factors of Mechanical Strength and Toughness in Oriented Poly(l-lactic acid) Monofilaments for a Bioresorbable Self-Expanding Stent.
    Wang B; Liu M; Liu J; Tian Y; Liu W; Wu G; Cheng J; Zhang Y; Zhao G; Ni Z
    Langmuir; 2022 Nov; 38(44):13477-13487. PubMed ID: 36306177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different properties of poly(L-lactic acid) monofilaments and its corresponding braided springs after constrained and unconstrained annealing.
    Zhao G; Ma S; Li X; Tian Y; Wu G; Zhang Y; Cheng J; Ni Z
    J Biomater Appl; 2022 Sep; 37(3):517-526. PubMed ID: 35639441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable vascular stents with high tensile and compressive strength: a novel strategy for applying monofilaments via solid-state drawing and shaped-annealing processes.
    Im SH; Kim CY; Jung Y; Jang Y; Kim SH
    Biomater Sci; 2017 Feb; 5(3):422-431. PubMed ID: 28184401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hazardous boundary of Poly(L-lactic acid) braided stent design: Limited elastic deformability of polymer materials.
    Li J; Cheng J; Hu X; Liu J; Tian Y; Wu G; Chen L; Zhang Y; Zhao G; Ni Z
    J Mech Behav Biomed Mater; 2023 Feb; 138():105628. PubMed ID: 36543082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed-braided stent: An effective way to improve comprehensive mechanical properties of poly (L-lactic acid) self-expandable braided stent.
    Liu M; Tian Y; Cheng J; Zhang Y; Zhao G; Ni Z
    J Mech Behav Biomed Mater; 2022 Apr; 128():105123. PubMed ID: 35183885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: Viscoelasticity, processability and flexibility.
    He W; Ye L; Coates P; Caton-Rose F; Zhao X
    Int J Biol Macromol; 2023 May; 236():123980. PubMed ID: 36898455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of resistance to radial cyclic loads of poly(L-lactic acid) braided stents with different braiding angles.
    Liu Q; Liu M; Tian Y; Cheng J; Lang J; Zhang Y; Zhao G; Ni Z
    Int J Biol Macromol; 2022 Oct; 218():94-101. PubMed ID: 35870623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization.
    Broström J; Boss A; Chronakis IS
    Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents.
    Agrawal CM; Haas KF; Leopold DA; Clark HG
    Biomaterials; 1992; 13(3):176-82. PubMed ID: 1567942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing, annealing and sterilisation of poly-L-lactide.
    Weir NA; Buchanan FJ; Orr JF; Farrar DF; Boyd A
    Biomaterials; 2004 Aug; 25(18):3939-49. PubMed ID: 15046884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of poly(ɛ-caprolactone-co-L-lactide) on thermal and functional properties of poly(L-lactide).
    Qin Y; Liu S; Zhang Y; Yuan M; Li H; Yuan M
    Int J Biol Macromol; 2014 Sep; 70():327-33. PubMed ID: 25020084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental investigation of the mechanical performance of PLLA wire-braided stents.
    Lucchetti A; Emonts C; Idrissi A; Gries T; Vaughan TJ
    J Mech Behav Biomed Mater; 2023 Feb; 138():105568. PubMed ID: 36459705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabricating High-Thermal-Conductivity, High-Strength, and High-Toughness Polylactic Acid-Based Blend Composites
    Sun DX; Gu T; Mao YT; Huang CH; Qi XD; Yang JH; Wang Y
    Biomacromolecules; 2022 Apr; 23(4):1789-1802. PubMed ID: 35344361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of laser cut poly(L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization.
    Grabow N; Schlun M; Sternberg K; Hakansson N; Kramer S; Schmitz KP
    J Biomech Eng; 2005 Feb; 127(1):25-31. PubMed ID: 15868785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of three-dimensionally printed vascular stents of bioresorbable poly(l-lactide-co-caprolactone).
    Zhao J; Song G; Zhao Q; Feng H; Wang Y; Anderson JM; Zhao H; Liu Q
    J Biomed Mater Res B Appl Biomater; 2023 Mar; 111(3):656-664. PubMed ID: 36420745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents.
    Wang Q; Fang G; Zhao Y; Wang G; Cai T
    J Mech Behav Biomed Mater; 2017 Jan; 65():415-427. PubMed ID: 27643678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of parameters on mechanical properties of poly (L-lactic acid) helical stents.
    Zhao G; Liu J; Liu M; Tian Y; Cheng J; Liu W; Ni Z
    J Biomed Mater Res B Appl Biomater; 2022 Jul; 110(7):1705-1712. PubMed ID: 35157351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved heat resistance properties of poly(l-lactide)/basalt fiber biocomposites with high crystallinity under forming hybrid-crystalline morphology.
    Pan H; Kong J; Chen Y; Zhang H; Dong L
    Int J Biol Macromol; 2019 Feb; 122():848-856. PubMed ID: 30420337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.