BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 37237081)

  • 21. CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions.
    Munoz DM; Cassiani PJ; Li L; Billy E; Korn JM; Jones MD; Golji J; Ruddy DA; Yu K; McAllister G; DeWeck A; Abramowski D; Wan J; Shirley MD; Neshat SY; Rakiec D; de Beaumont R; Weber O; Kauffmann A; McDonald ER; Keen N; Hofmann F; Sellers WR; Schmelzle T; Stegmeier F; Schlabach MR
    Cancer Discov; 2016 Aug; 6(8):900-13. PubMed ID: 27260157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a Genetic Scalpel for the Treatment of Cancer: A Translational Narrative Review.
    Mondal R; Brahmbhatt N; Sandhu SK; Shah H; Vashi M; Gandhi SK; Patel P
    Cureus; 2023 Dec; 15(12):e50031. PubMed ID: 38186450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional Genomics via CRISPR-Cas.
    Ford K; McDonald D; Mali P
    J Mol Biol; 2019 Jan; 431(1):48-65. PubMed ID: 29959923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
    Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B
    Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9.
    Byambaa S; Uosaki H; Hara H; Nagao Y; Abe T; Shibata H; Nureki O; Ohmori T; Hanazono Y
    Exp Anim; 2020 Apr; 69(2):189-198. PubMed ID: 31801915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in
    Yan MY; Zheng D; Li SS; Ding XY; Wang CL; Guo XP; Zhan L; Jin Q; Yang J; Sun YC
    Sci Adv; 2022 Nov; 8(47):eadd5907. PubMed ID: 36417506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
    Cho S; Shin J; Cho BK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.
    Ui-Tei K; Maruyama S; Nakano Y
    Genome; 2017 Jun; 60(6):537-545. PubMed ID: 28177825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enabling functional genomics with genome engineering.
    Hilton IB; Gersbach CA
    Genome Res; 2015 Oct; 25(10):1442-55. PubMed ID: 26430154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming.
    Wu Y; Liu Y; Lv X; Li J; Du G; Liu L
    ACS Synth Biol; 2020 Sep; 9(9):2228-2238. PubMed ID: 32794766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.
    Mashimo T
    Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9 and cancer targets: future possibilities and present challenges.
    White MK; Khalili K
    Oncotarget; 2016 Mar; 7(11):12305-17. PubMed ID: 26840090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Establishment of Functional Genomics Pipeline in Mouse Epiblast-Like Tissue by Combining Transcriptomic Analysis and Gene Knockdown/Knockin/Knockout, Using RNA Interference and CRISPR/Cas9.
    Takata N; Sakakura E; Kasukawa T; Sakuma T; Yamamoto T; Sasai Y
    Hum Gene Ther; 2016 Jun; 27(6):436-50. PubMed ID: 26839115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics.
    Hart T; Brown KR; Sircoulomb F; Rottapel R; Moffat J
    Mol Syst Biol; 2014 Jul; 10(7):733. PubMed ID: 24987113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-GE: A Convenient Software Toolkit for CRISPR-Based Genome Editing.
    Xie X; Ma X; Zhu Q; Zeng D; Li G; Liu YG
    Mol Plant; 2017 Sep; 10(9):1246-1249. PubMed ID: 28624544
    [No Abstract]   [Full Text] [Related]  

  • 36. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells.
    Zhou Y; Zhu S; Cai C; Yuan P; Li C; Huang Y; Wei W
    Nature; 2014 May; 509(7501):487-91. PubMed ID: 24717434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis.
    Shmakov SA; Makarova KS; Wolf YI; Severinov KV; Koonin EV
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):E5307-E5316. PubMed ID: 29784811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Development, Function, and Plasticity.
    Yang MG; West AE
    Yale J Biol Med; 2016 Dec; 89(4):457-470. PubMed ID: 28018138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology.
    Ishino Y; Krupovic M; Forterre P
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29358495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diving into marine genomics with CRISPR/Cas9 systems.
    Momose T; Concordet JP
    Mar Genomics; 2016 Dec; 30():55-65. PubMed ID: 27742404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.