These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37237102)

  • 1. Deep ultraviolet fluorescence microscopy of three-dimensional structures in the mouse brain.
    Kasaragod DK; Aizawa H
    Sci Rep; 2023 May; 13(1):8553. PubMed ID: 37237102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A workflow for 3D-CLEM investigating liver tissue.
    Kremer A; VAN Hamme E; Bonnardel J; Borghgraef P; GuÉrin CJ; Guilliams M; Lippens S
    J Microsc; 2021 Mar; 281(3):231-242. PubMed ID: 33034376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse.
    Wang Y; Chen M; Alifu N; Li S; Qin W; Qin A; Tang BZ; Qian J
    ACS Nano; 2017 Oct; 11(10):10452-10461. PubMed ID: 29016105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D cryo-imaging: a very high-resolution view of the whole mouse.
    Roy D; Steyer GJ; Gargesha M; Stone ME; Wilson DL
    Anat Rec (Hoboken); 2009 Mar; 292(3):342-51. PubMed ID: 19248166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for ultrafast tissue clearing that preserves fluorescence for multimodal and longitudinal brain imaging.
    Shan QH; Qin XY; Zhou N; Huang C; Wang Y; Chen P; Zhou JN
    BMC Biol; 2022 Mar; 20(1):77. PubMed ID: 35351101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wide field block face imaging using deep ultraviolet induced autofluorescence of the human brain.
    Karthik S; Joseph J; Jayakumar J; Manoj R; Shetty M; Bota M; Verma R; Mitra P; Sivaprakasam M
    J Neurosci Methods; 2023 Sep; 397():109921. PubMed ID: 37459898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution.
    Fu YY; Lin CW; Enikolopov G; Sibley E; Chiang AS; Tang SC
    Gastroenterology; 2009 Aug; 137(2):453-65. PubMed ID: 19447107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional analysis of molecular signals with episcopic imaging techniques.
    Weninger WJ; Mohun TJ
    Methods Mol Biol; 2007; 411():35-46. PubMed ID: 18287637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-sheet microscopy in the near-infrared II window.
    Wang F; Wan H; Ma Z; Zhong Y; Sun Q; Tian Y; Qu L; Du H; Zhang M; Li L; Ma H; Luo J; Liang Y; Li WJ; Hong G; Liu L; Dai H
    Nat Methods; 2019 Jun; 16(6):545-552. PubMed ID: 31086342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing architectural order with quantitative label-free imaging and deep learning.
    Guo SM; Yeh LH; Folkesson J; Ivanov IE; Krishnan AP; Keefe MG; Hashemi E; Shin D; Chhun BB; Cho NH; Leonetti MD; Han MH; Nowakowski TJ; Mehta SB
    Elife; 2020 Jul; 9():. PubMed ID: 32716843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging.
    Zhang M; Yue J; Cui R; Ma Z; Wan H; Wang F; Zhu S; Zhou Y; Kuang Y; Zhong Y; Pang DW; Dai H
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6590-6595. PubMed ID: 29891702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Intelligent Fluorescence Endo-Microscopy by Varifocal Meta-Device and Deep Learning.
    Chia YH; Liao WH; Vyas S; Chu CH; Yamaguchi T; Liu X; Tanaka T; Huang YY; Chen MK; Chen WS; Tsai DP; Luo Y
    Adv Sci (Weinh); 2024 May; 11(20):e2307837. PubMed ID: 38488694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Microscopy by Milling with Ultraviolet Excitation.
    Guo J; Artur C; Eriksen JL; Mayerich D
    Sci Rep; 2019 Oct; 9(1):14578. PubMed ID: 31601843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Step Fast Tissue Clearing of Thick Mouse Brain Tissue for Multi-Dimensional High-Resolution Imaging.
    Ryu Y; Kim Y; Lim HR; Kim HJ; Park BS; Kim JG; Park SJ; Ha CM
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging cellular spheroids with a single (selective) plane illumination microscope.
    Swoger J; Pampaloni F; Stelzer EH
    Cold Spring Harb Protoc; 2014 Jan; 2014(1):106-13. PubMed ID: 24371324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens.
    Xiao L; Fang C; Zhu L; Wang Y; Yu T; Zhao Y; Zhu D; Fei P
    Opt Express; 2020 Sep; 28(20):30234-30247. PubMed ID: 33114907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three dimensional multiphoton imaging of fresh and whole mount developing mouse mammary glands.
    Johnson MD; Mueller SC
    BMC Cancer; 2013 Aug; 13():373. PubMed ID: 23919456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional imaging of xenograft tumors using optical computed and emission tomography.
    Oldham M; Sakhalkar H; Oliver T; Wang YM; Kirpatrick J; Cao Y; Badea C; Johnson GA; Dewhirst M
    Med Phys; 2006 Sep; 33(9):3193-202. PubMed ID: 17022212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchrotron UV fluorescence microscopy uncovers new probes in cells and tissues.
    Jamme F; Villette S; Giuliani A; Rouam V; Wien F; Lagarde B; Réfrégiers M
    Microsc Microanal; 2010 Oct; 16(5):507-14. PubMed ID: 20738889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods.
    Lloyd-Lewis B; Davis FM; Harris OB; Hitchcock JR; Lourenco FC; Pasche M; Watson CJ
    Breast Cancer Res; 2016 Dec; 18(1):127. PubMed ID: 27964754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.