These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 37237146)

  • 1. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges.
    Ritterhoff J; Tian R
    Nat Rev Cardiol; 2023 Dec; 20(12):812-829. PubMed ID: 37237146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.
    Kolwicz SC; Purohit S; Tian R
    Circ Res; 2013 Aug; 113(5):603-16. PubMed ID: 23948585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of physiological and pathological cardiac hypertrophy.
    Nakamura M; Sadoshima J
    Nat Rev Cardiol; 2018 Jul; 15(7):387-407. PubMed ID: 29674714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared?
    Balakumar P; Jagadeesh G
    Pharmacol Res; 2010 Nov; 62(5):365-83. PubMed ID: 20643208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure.
    Murdoch CE; Zhang M; Cave AC; Shah AM
    Cardiovasc Res; 2006 Jul; 71(2):208-15. PubMed ID: 16631149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure.
    Heger J; Schulz R; Euler G
    Br J Pharmacol; 2016 Jan; 173(1):3-14. PubMed ID: 26431212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic remodelling of the failing heart: the cardiac burn-out syndrome?
    van Bilsen M; Smeets PJ; Gilde AJ; van der Vusse GJ
    Cardiovasc Res; 2004 Feb; 61(2):218-26. PubMed ID: 14736538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is there a causal link between intracellular Na elevation and metabolic remodelling in cardiac hypertrophy?
    Aksentijevic D; O'Brien BA; Eykyn TR; Shattock MJ
    Biochem Soc Trans; 2018 Aug; 46(4):817-827. PubMed ID: 29970448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous NADPH exerts a positive inotropic effect and enhances energy metabolism via SIRT3 in pathological cardiac hypertrophy and heart failure.
    Qian K; Tang J; Ling YJ; Zhou M; Yan XX; Xie Y; Zhu LJ; Nirmala K; Sun KY; Qin ZH; Sheng R
    EBioMedicine; 2023 Dec; 98():104863. PubMed ID: 37950995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Coordination of Physiological and Pathological Cardiac Remodeling.
    Gibb AA; Hill BG
    Circ Res; 2018 Jun; 123(1):107-128. PubMed ID: 29929976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic reprogramming via PPARα signaling in cardiac hypertrophy and failure: From metabolomics to epigenetics.
    Warren JS; Oka SI; Zablocki D; Sadoshima J
    Am J Physiol Heart Circ Physiol; 2017 Sep; 313(3):H584-H596. PubMed ID: 28646024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart.
    Aubert G; Vega RB; Kelly DP
    Biochim Biophys Acta; 2013 Apr; 1833(4):840-7. PubMed ID: 22964268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plin5 deficiency exacerbates pressure overload-induced cardiac hypertrophy and heart failure by enhancing myocardial fatty acid oxidation and oxidative stress.
    Wang C; Yuan Y; Wu J; Zhao Y; Gao X; Chen Y; Sun C; Xiao L; Zheng P; Hu P; Li Z; Wang Z; Ye J; Zhang L
    Free Radic Biol Med; 2019 Sep; 141():372-382. PubMed ID: 31291602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myostatin regulates energy homeostasis in the heart and prevents heart failure.
    Biesemann N; Mendler L; Wietelmann A; Hermann S; Schäfers M; Krüger M; Boettger T; Borchardt T; Braun T
    Circ Res; 2014 Jul; 115(2):296-310. PubMed ID: 24807786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathological Remodeling of the Myocardium in Chronic Heart Failure: Role of PGC-1α.
    Kulikova TG; Stepanova OV; Voronova AD; Valikhov MP; Sirotkin VN; Zhirov IV; Tereshchenko SN; Masenko VP; Samko AN; Sukhikh GT
    Bull Exp Biol Med; 2018 Apr; 164(6):794-797. PubMed ID: 29658071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LncRNA AK045171 protects the heart from cardiac hypertrophy by regulating the SP1/MG53 signalling pathway.
    Xu L; Wang H; Jiang F; Sun H; Zhang D
    Aging (Albany NY); 2020 Feb; 12(4):3126-3139. PubMed ID: 32087602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPK and cardiac remodelling.
    Feng Y; Zhang Y; Xiao H
    Sci China Life Sci; 2018 Jan; 61(1):14-23. PubMed ID: 29170891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac-specific overexpression of farnesyl pyrophosphate synthase induces cardiac hypertrophy and dysfunction in mice.
    Yang J; Mou Y; Wu T; Ye Y; Jiang JC; Zhao CZ; Zhu HH; Du CQ; Zhou L; Hu SJ
    Cardiovasc Res; 2013 Mar; 97(3):490-9. PubMed ID: 23180723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of histone deacetylases in cardiac energy metabolism in heart diseases.
    Yu Q; Zhao G; Liu J; Peng Y; Xu X; Zhao F; Shi Y; Jin C; Zhang J; Wei B
    Metabolism; 2023 May; 142():155532. PubMed ID: 36889378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy.
    Fernandez-Caggiano M; Kamynina A; Francois AA; Prysyazhna O; Eykyn TR; Krasemann S; Crespo-Leiro MG; Vieites MG; Bianchi K; Morales V; Domenech N; Eaton P
    Nat Metab; 2020 Nov; 2(11):1223-1231. PubMed ID: 33106688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.