These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37237512)
1. Long-Term Daytime Warming Rather Than Nighttime Warming Alters Soil Microbial Composition in a Semi-Arid Grassland. Feng J; Ru J; Song J; Qiu X; Wan S Biology (Basel); 2023 May; 12(5):. PubMed ID: 37237512 [TBL] [Abstract][Full Text] [Related]
2. Warming suppresses grassland recovery in biomass but not in community composition after grazing exclusion in a Mongolian grassland. Kinugasa T; Yoshihara Y; Aoki R; Gantsetseg B; Sasaki T Oecologia; 2024 Oct; 206(1-2):127-139. PubMed ID: 39292436 [TBL] [Abstract][Full Text] [Related]
3. Climate warming suppresses abundant soil fungal taxa and reduces soil carbon efflux in a semi-arid grassland. Qiu Y; Zhang K; Zhao Y; Zhao Y; Wang B; Wang Y; He T; Xu X; Bai T; Zhang Y; Hu S mLife; 2023 Dec; 2(4):389-400. PubMed ID: 38818267 [TBL] [Abstract][Full Text] [Related]
4. Nighttime warming enhances drought resistance of plant communities in a temperate steppe. Yang Z; Jiang L; Su F; Zhang Q; Xia J; Wan S Sci Rep; 2016 Mar; 6():23267. PubMed ID: 26987482 [TBL] [Abstract][Full Text] [Related]
5. Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling. Zhang N; Liu W; Yang H; Yu X; Gutknecht JL; Zhang Z; Wan S; Ma K Oecologia; 2013 Nov; 173(3):1125-42. PubMed ID: 23736549 [TBL] [Abstract][Full Text] [Related]
6. Effects of climate warming on carbon fluxes in grasslands- A global meta-analysis. Wang N; Quesada B; Xia L; Butterbach-Bahl K; Goodale CL; Kiese R Glob Chang Biol; 2019 May; 25(5):1839-1851. PubMed ID: 30801860 [TBL] [Abstract][Full Text] [Related]
7. Increasing precipitation weakened the negative effects of simulated warming on soil microbial community composition in a semi-arid sandy grassland. Wang S; Jiang X; Li J; Zhao X; Han E; Qu H; Ma X; Lian J Front Microbiol; 2022; 13():1074841. PubMed ID: 36704553 [TBL] [Abstract][Full Text] [Related]
8. Deterministic assembly of grassland soil microbial communities driven by climate warming amplifies soil carbon loss. Wang X; Wang Z; Chen F; Zhang Z; Fang J; Xing L; Zeng J; Zhang Q; Liu H; Liu W; Ren C; Yang G; Zhong Z; Zhang W; Han X Sci Total Environ; 2024 May; 923():171418. PubMed ID: 38460701 [TBL] [Abstract][Full Text] [Related]
9. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Wu L; Zhang Y; Guo X; Ning D; Zhou X; Feng J; Yuan MM; Liu S; Guo J; Gao Z; Ma J; Kuang J; Jian S; Han S; Yang Z; Ouyang Y; Fu Y; Xiao N; Liu X; Wu L; Zhou A; Yang Y; Tiedje JM; Zhou J Nat Microbiol; 2022 Jul; 7(7):1054-1062. PubMed ID: 35697795 [TBL] [Abstract][Full Text] [Related]
10. Unaltered soil microbial community composition, but decreased metabolic activity in a semiarid grassland after two years of passive experimental warming. Fang C; Ke W; Campioli M; Pei J; Yuan Z; Song X; Ye JS; Li F; Janssens IA Ecol Evol; 2020 Nov; 10(21):12327-12340. PubMed ID: 33209291 [TBL] [Abstract][Full Text] [Related]
11. Divergent rhizosphere and non-rhizosphere soil microbial structure and function in long-term warmed steppe due to altered root exudation. Yu Y; Zhou Y; Janssens IA; Deng Y; He X; Liu L; Yi Y; Xiao N; Wang X; Li C; Xiao C Glob Chang Biol; 2024 Jan; 30(1):e17111. PubMed ID: 38273581 [TBL] [Abstract][Full Text] [Related]
12. Responses of microbial residues to simulated climate change in a semiarid grassland. Shao P; He H; Zhang X; Xie H; Bao X; Liang C Sci Total Environ; 2018 Dec; 644():1286-1291. PubMed ID: 30743841 [TBL] [Abstract][Full Text] [Related]
13. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide. Pendall E; Heisler-White JL; Williams DG; Dijkstra FA; Carrillo Y; Morgan JA; Lecain DR PLoS One; 2013; 8(8):e71921. PubMed ID: 23977180 [TBL] [Abstract][Full Text] [Related]
14. Elevated CO Yu H; Deng Y; He Z; Van Nostrand JD; Wang S; Jin D; Wang A; Wu L; Wang D; Tai X; Zhou J Front Microbiol; 2018; 9():1790. PubMed ID: 30154760 [TBL] [Abstract][Full Text] [Related]
15. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil. Hayden HL; Mele PM; Bougoure DS; Allan CY; Norng S; Piceno YM; Brodie EL; Desantis TZ; Andersen GL; Williams AL; Hovenden MJ Environ Microbiol; 2012 Dec; 14(12):3081-96. PubMed ID: 23039205 [TBL] [Abstract][Full Text] [Related]
17. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China. Ma LN; Lü XT; Liu Y; Guo JX; Zhang NY; Yang JQ; Wang RZ PLoS One; 2011; 6(11):e27645. PubMed ID: 22096609 [TBL] [Abstract][Full Text] [Related]
18. Long-term warming in a Mediterranean-type grassland affects soil bacterial functional potential but not bacterial taxonomic composition. Gao Y; Ding J; Yuan M; Chiariello N; Docherty K; Field C; Gao Q; Gu B; Gutknecht J; Hungate BA; Le Roux X; Niboyet A; Qi Q; Shi Z; Zhou J; Yang Y NPJ Biofilms Microbiomes; 2021 Feb; 7(1):17. PubMed ID: 33558544 [TBL] [Abstract][Full Text] [Related]
19. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland. Birgander J; Olsson PA; Rousk J Glob Chang Biol; 2018 Aug; 24(8):3357-3367. PubMed ID: 29345091 [TBL] [Abstract][Full Text] [Related]
20. Long-Term Warming in Alaska Enlarges the Diazotrophic Community in Deep Soils. Feng J; Penton CR; He Z; Van Nostrand JD; Yuan MM; Wu L; Wang C; Qin Y; Shi ZJ; Guo X; Schuur EAG; Luo Y; Bracho R; Konstantinidis KT; Cole JR; Tiedje JM; Yang Y; Zhou J mBio; 2019 Feb; 10(1):. PubMed ID: 30808694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]