These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37237580)

  • 1. Machine Learning for Optical Motion Capture-Driven Musculoskeletal Modelling from Inertial Motion Capture Data.
    Dasgupta A; Sharma R; Mishra C; Nagaraja VH
    Bioengineering (Basel); 2023 Apr; 10(5):. PubMed ID: 37237580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating Compressive and Shear Forces at L5-S1: Exploring the Effects of Load Weight, Asymmetry, and Height Using Optical and Inertial Motion Capture Systems.
    Nail-Ulloa I; Zabala M; Sesek R; Chen H; Schall MC; Gallagher S
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a low-cost inertial motion capture system for whole-body motion analysis.
    Robert-Lachaine X; Mecheri H; Muller A; Larue C; Plamondon A
    J Biomech; 2020 Jan; 99():109520. PubMed ID: 31787261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity comparison of inertial to optical motion capture during gait: implications for tracking recovery.
    Lee J; Shin SY; Ghorpade G; Akbas T; Sulzer J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():139-144. PubMed ID: 31374620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous ambulatory hand force monitoring during manual materials handling using instrumented force shoes and an inertial motion capture suit.
    Faber GS; Koopman AS; Kingma I; Chang CC; Dennerlein JT; van Dieën JH
    J Biomech; 2018 Mar; 70():235-241. PubMed ID: 29157658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-resolution physics-informed recurrent neural network: formulation and application to musculoskeletal systems.
    Taneja K; He X; He Q; Chen JS
    Comput Mech; 2024; 73(5):1125-1145. PubMed ID: 38699409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial Motion Capture-Based Wearable Systems for Estimation of Joint Kinetics: A Systematic Review.
    Lee CJ; Lee JK
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity and Reliability of Inertial Measurement Unit (IMU)-Derived 3D Joint Kinematics in Persons Wearing Transtibial Prosthesis.
    Rattanakoch J; Samala M; Limroongreungrat W; Guerra G; Tharawadeepimuk K; Nanbancha A; Niamsang W; Kerdsomnuek P; Suwanmana S
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of a wearable inertial motion capture system for capturing physical exposures during manual material handling tasks.
    Kim S; Nussbaum MA
    Ergonomics; 2013; 56(2):314-26. PubMed ID: 23231730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial motion capture validation of 3D knee kinematics at various gait speed on the treadmill with a double-pose calibration.
    Robert-Lachaine X; Parent G; Fuentes A; Hagemeister N; Aissaoui R
    Gait Posture; 2020 Mar; 77():132-137. PubMed ID: 32035296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.
    Faber GS; Chang CC; Kingma I; Dennerlein JT; van Dieën JH
    J Biomech; 2016 Apr; 49(6):904-912. PubMed ID: 26795123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing motion tracking accuracy of a low-cost 3D video sensor using a biomechanical model, sensor fusion, and deep learning.
    Agami S; Riemer R; Berman S
    Front Rehabil Sci; 2022; 3():956381. PubMed ID: 36188943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Direct Comparison of Biplanar Videoradiography and Optical Motion Capture for Foot and Ankle Kinematics.
    Kessler SE; Rainbow MJ; Lichtwark GA; Cresswell AG; D'Andrea SE; Konow N; Kelly LA
    Front Bioeng Biotechnol; 2019; 7():199. PubMed ID: 31508415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Musculoskeletal model-based inverse dynamic analysis under ambulatory conditions using inertial motion capture.
    Karatsidis A; Jung M; Schepers HM; Bellusci G; de Zee M; Veltink PH; Andersen MS
    Med Eng Phys; 2019 Mar; 65():68-77. PubMed ID: 30737118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of a Scaled Cadaver-Based Musculoskeletal Model With a Clinical Upper Extremity Model.
    Nagaraja VH; Bergmann JHM; Andersen MS; Thompson MS
    J Biomech Eng; 2023 Apr; 145(4):. PubMed ID: 36346198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Spinal Loading During Manual Materials Handling Using Inertial Motion Capture.
    Larsen FG; Svenningsen FP; Andersen MS; de Zee M; Skals S
    Ann Biomed Eng; 2020 Feb; 48(2):805-821. PubMed ID: 31748833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems.
    Taneja K; He X; He Q; Zhao X; Lin YA; Loh KJ; Chen JS
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 35972808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial measurement unit-based motion capture to replace camera-based systems for assessing gait in healthy young adults: Proceed with caution.
    Rekant J; Rothenberger S; Chambers A
    Measur Sens; 2022 Oct; 23():. PubMed ID: 36506853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Method for Calculating Lower Extremity Anatomical Landmark Trajectories Based on Inertial Motion Capture Data.
    Wang Z; Gao F; Wu Z; Wang D; Guo X; Yu S
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2734-2746. PubMed ID: 37314897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bionic neural network for external simulation of human locomotor system.
    Shi Y; Ma S; Zhao Y
    ArXiv; 2023 Sep; ():. PubMed ID: 37744468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.