These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37237649)
1. MultiResUNet3+: A Full-Scale Connected Multi-Residual UNet Model to Denoise Electrooculogram and Electromyogram Artifacts from Corrupted Electroencephalogram Signals. Hossain MS; Mahmud S; Khandakar A; Al-Emadi N; Chowdhury FA; Mahbub ZB; Reaz MBI; Chowdhury MEH Bioengineering (Basel); 2023 May; 10(5):. PubMed ID: 37237649 [TBL] [Abstract][Full Text] [Related]
2. SNOAR: a new regression approach for the removal of ocular artifact from multi-channel electroencephalogram signals. Juyal R; Muthusamy H; Kumar N Med Biol Eng Comput; 2022 Dec; 60(12):3567-3583. PubMed ID: 36245020 [TBL] [Abstract][Full Text] [Related]
3. A Novel Method Based on Combination of Independent Component Analysis and Ensemble Empirical Mode Decomposition for Removing Electrooculogram Artifacts From Multichannel Electroencephalogram Signals. Teng CL; Zhang YY; Wang W; Luo YY; Wang G; Xu J Front Neurosci; 2021; 15():729403. PubMed ID: 34707475 [TBL] [Abstract][Full Text] [Related]
4. A novel neural network with Non-Recursive IIR Filters on EEG Artifacts Elimination. Miyazaki R; Ohshiro M; Nishimura T; Tsubai M Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():2048-51. PubMed ID: 17282629 [TBL] [Abstract][Full Text] [Related]
5. Circulant Singular Spectrum Analysis and Discrete Wavelet Transform for Automated Removal of EOG Artifacts from EEG Signals. Yedukondalu J; Sharma LD Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772275 [No Abstract] [Full Text] [Related]
6. An investigation of EEG artifacts elimination using a neural network with non-recursive 2nd order volterra filters. Shigemura S; Nishimura T; Tsubai M; Yokoi H Conf Proc IEEE Eng Med Biol Soc; 2004; 2006():612-5. PubMed ID: 17271751 [TBL] [Abstract][Full Text] [Related]
7. Understanding the nonlinear behavior of EEG with advanced machine learning in artifact elimination. Sunny MSH; Hossain S; Afroze N; Hasan MK; Hossain E; Rahman MH Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34852330 [TBL] [Abstract][Full Text] [Related]
8. Embedding decomposition for artifacts removal in EEG signals. Yu J; Li C; Lou K; Wei C; Liu Q J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35378524 [No Abstract] [Full Text] [Related]
9. Online removal of muscle artifact from electroencephalogram signals based on canonical correlation analysis. Gao J; Zheng C; Wang P Clin EEG Neurosci; 2010 Jan; 41(1):53-9. PubMed ID: 20307017 [TBL] [Abstract][Full Text] [Related]
10. A non-linear estimation model for adaptive minimization of EOG artefacts from EEG signals. Sadasivan PK; Dutt DN Int J Biomed Comput; 1994 Jul; 36(3):199-207. PubMed ID: 7960205 [TBL] [Abstract][Full Text] [Related]
11. Brain-Computer Interface: The HOL-SSA Decomposition and Two-Phase Classification on the HGD EEG Data. Antony MJ; Sankaralingam BP; Khan S; Almjally A; Almujally NA; Mahendran RK Diagnostics (Basel); 2023 Sep; 13(17):. PubMed ID: 37685390 [TBL] [Abstract][Full Text] [Related]
12. The removal of ocular artifacts from EEG signals using adaptive filters based on ocular source components. Chan HL; Tsai YT; Meng LF; Wu T Ann Biomed Eng; 2010 Nov; 38(11):3489-99. PubMed ID: 20532631 [TBL] [Abstract][Full Text] [Related]
13. Hybrid algorithm for multi artifact removal from single channel EEG. Noorbasha SK; Florence Sudha G Biomed Phys Eng Express; 2021 May; 7(4):. PubMed ID: 33930879 [TBL] [Abstract][Full Text] [Related]
14. A multi-task and multi-channel convolutional neural network for semi-supervised neonatal artefact detection. Hermans T; Smets L; Lemmens K; Dereymaeker A; Jansen K; Naulaers G; Zappasodi F; Van Huffel S; Comani S; De Vos M J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36791462 [No Abstract] [Full Text] [Related]
15. Ocular artifacts in children's EEG: selection is better than correction. Somsen RJ; van Beek B Biol Psychol; 1998 Aug; 48(3):281-300. PubMed ID: 9788765 [TBL] [Abstract][Full Text] [Related]
16. Removal of EMG Artifacts from Multichannel EEG Signals Using Combined Singular Spectrum Analysis and Canonical Correlation Analysis. Liu Q; Liu A; Zhang X; Chen X; Qian R; Chen X J Healthc Eng; 2019; 2019():4159676. PubMed ID: 31976053 [TBL] [Abstract][Full Text] [Related]
17. SleepGCN: A transition rule learning model based on Graph Convolutional Network for sleep staging. Wang X; Zhu Y Comput Methods Programs Biomed; 2024 Dec; 257():108405. PubMed ID: 39243591 [TBL] [Abstract][Full Text] [Related]
18. Implementation of a Convolutional Neural Network for Eye Blink Artifacts Removal From the Electroencephalography Signal. Jurczak M; Kołodziej M; Majkowski A Front Neurosci; 2022; 16():782367. PubMed ID: 35221897 [TBL] [Abstract][Full Text] [Related]
19. Motion Artifacts Correction from Single-Channel EEG and fNIRS Signals Using Novel Wavelet Packet Decomposition in Combination with Canonical Correlation Analysis. Hossain MS; Chowdhury MEH; Reaz MBI; Ali SHM; Bakar AAA; Kiranyaz S; Khandakar A; Alhatou M; Habib R; Hossain MM Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590859 [TBL] [Abstract][Full Text] [Related]
20. Improving EEG Muscle Artifact Removal With an EMG Array. Mucarquer JA; Prado P; Escobar MJ; El-Deredy W; Zañartu M IEEE Trans Instrum Meas; 2020 Mar; 69(3):815-824. PubMed ID: 32205896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]