These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37237690)
61. Improving high throughput manufacture of laser-inscribed graphene electrodes via hierarchical clustering. Qian H; Moreira G; Vanegas D; Tang Y; Pola C; Gomes C; McLamore E; Bliznyuk N Sci Rep; 2024 Apr; 14(1):7980. PubMed ID: 38575717 [TBL] [Abstract][Full Text] [Related]
62. Electrochemical detection of nitrofurazone using laser-engraved three-electrode graphene array. Jiang X; Yin J; Liu L; Wu K Anal Chim Acta; 2024 Aug; 1317():342898. PubMed ID: 39030002 [TBL] [Abstract][Full Text] [Related]
63. Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials. Chen Y; Xu B; Gong J; Wen J; Hua T; Kan CW; Deng J ACS Appl Mater Interfaces; 2019 Jan; 11(2):2120-2129. PubMed ID: 30571093 [TBL] [Abstract][Full Text] [Related]
64. Disposable Paper-Based Biosensors: Optimizing the Electrochemical Properties of Laser-Induced Graphene. Bhattacharya G; Fishlock SJ; Hussain S; Choudhury S; Xiang A; Kandola B; Pritam A; Soin N; Roy SS; McLaughlin JA ACS Appl Mater Interfaces; 2022 Jul; 14(27):31109-31120. PubMed ID: 35767835 [TBL] [Abstract][Full Text] [Related]
65. A highly flexible Ni-Co MOF nanosheet coated Au/PDMS film based wearable electrochemical sensor for continuous human sweat glucose monitoring. Shu Y; Shang Z; Su T; Zhang S; Lu Q; Xu Q; Hu X Analyst; 2022 Mar; 147(7):1440-1448. PubMed ID: 35262099 [TBL] [Abstract][Full Text] [Related]
66. Laser-Induced Graphene: En Route to Smart Sensing. Huang L; Su J; Song Y; Ye R Nanomicro Lett; 2020; 12(1):157. PubMed ID: 32835028 [TBL] [Abstract][Full Text] [Related]
67. Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective. Wanjari VP; Reddy AS; Duttagupta SP; Singh SP Environ Sci Pollut Res Int; 2023 Mar; 30(15):42643-42657. PubMed ID: 35622288 [TBL] [Abstract][Full Text] [Related]
68. Facile fabrication of laser induced versatile graphene-metal nanoparticles electrodes for the detection of hazardous molecules. Jiang M; Zhu L; Liu Y; Li J; Diao Y; Wang C; Guo X; Chen D Talanta; 2023 May; 257():124368. PubMed ID: 36801558 [TBL] [Abstract][Full Text] [Related]
69. Size-Dependent Electrochemistry of Laser-Induced Graphene Electrodes. Wirojsaengthong S; Chailapakul O; Tangkijvanich P; Henry CS; Puthongkham P Electrochim Acta; 2024 Aug; 494():. PubMed ID: 38881690 [TBL] [Abstract][Full Text] [Related]
70. A flexible and disposable electrochemical sensor for the evaluation of arsenic levels: A new and efficient method for the batch fabrication of chemically modified electrodes. Zhao G; Wang X; Liu G; Cao Y; Liu N; Thi Dieu Thuy N; Zhang L; Yu M Anal Chim Acta; 2022 Feb; 1194():339413. PubMed ID: 35063159 [TBL] [Abstract][Full Text] [Related]
71. All laser direct writing process for temperature sensor based on graphene and silver. Li Q; Bai R; Guo L; Gao Y Front Optoelectron; 2024 Feb; 17(1):5. PubMed ID: 38311649 [TBL] [Abstract][Full Text] [Related]
72. Multifunctional Flexible Sensor Based on Laser-Induced Graphene. Han T; Nag A; Simorangkir RBVB; Afsarimanesh N; Liu H; Mukhopadhyay SC; Xu Y; Zhadobov M; Sauleau R Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31395810 [TBL] [Abstract][Full Text] [Related]
73. Sweat analysis with a wearable sensing platform based on laser-induced graphene. Vivaldi F; Dallinger A; Poma N; Bonini A; Biagini D; Salvo P; Borghi F; Tavanti A; Greco F; Di Francesco F APL Bioeng; 2022 Sep; 6(3):036104. PubMed ID: 36147196 [TBL] [Abstract][Full Text] [Related]
75. High-Performance Sensing Platform Based on Morphology/Lattice Collaborative Control of Femtosecond-Laser-Induced MXene-Composited Graphene. Su R; Liang M; Yuan Y; Huang C; Xing W; Bian X; Lian Y; Wang B; You Z; You R Adv Sci (Weinh); 2024 Sep; 11(36):e2404889. PubMed ID: 39041832 [TBL] [Abstract][Full Text] [Related]
76. Laser-induced graphene for bioelectronics and soft actuators. Xu Y; Fei Q; Page M; Zhao G; Ling Y; Chen D; Yan Z Nano Res; 2021; 14(9):3033-3050. PubMed ID: 33841746 [TBL] [Abstract][Full Text] [Related]
77. In-situ fabrication of titanium suboxide-laser induced graphene composites: Removal of organic pollutants and MS2 Bacteriophage. Kumar A; Barbhuiya NH; Nair AM; Jashrapuria K; Dixit N; Singh SP Chemosphere; 2023 Sep; 335():138988. PubMed ID: 37247678 [TBL] [Abstract][Full Text] [Related]
78. Affordable equipment to fabricate laser-induced graphene electrodes for portable electrochemical sensing. Costa WRP; Rocha RG; de Faria LV; Matias TA; Ramos DLO; Dias AGC; Fernandes GL; Richter EM; Muñoz RAA Mikrochim Acta; 2022 Apr; 189(5):185. PubMed ID: 35396635 [TBL] [Abstract][Full Text] [Related]
79. Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing. Vivaldi FM; Dallinger A; Bonini A; Poma N; Sembranti L; Biagini D; Salvo P; Greco F; Di Francesco F ACS Appl Mater Interfaces; 2021 Jul; 13(26):30245-30260. PubMed ID: 34167302 [TBL] [Abstract][Full Text] [Related]