These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37238481)

  • 1. Uniform Error Estimates of the Finite Element Method for the Navier-Stokes Equations in R2 with
    Ren S; Wang K; Feng X
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations.
    He Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniform Finite Element Error Estimates with Power-Type Asymptotic Constants for Unsteady Navier-Stokes Equations.
    Xie C; Wang K
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations.
    Li X; Yang X
    J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Optimal Error Estimate of the Fully Discrete Locally Stabilized Finite Volume Method for the Non-Stationary Navier-Stokes Problem.
    He G; Zhang Y
    Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients.
    Ding Q; Long X; Mao S
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations.
    Goraya S; Sobh N; Masud A
    Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variational principle for the Navier-Stokes equations.
    Kerswell RR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5482-94. PubMed ID: 11969527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Navier-Stokes regularity problem.
    Robinson JC
    Philos Trans A Math Phys Eng Sci; 2020 Jun; 378(2174):20190526. PubMed ID: 32507084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Analysis and Comparison of Four Stabilized Finite Element Methods for the Steady Micropolar Equations.
    Liu J; Liu D
    Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic Navier-Stokes Equations on a Thin Spherical Domain.
    Brzeźniak Z; Dhariwal G; Le Gia QT
    Appl Math Optim; 2021; 84(2):1971-2035. PubMed ID: 34720249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. COMPUTING ILL-POSED TIME-REVERSED 2D NAVIER-STOKES EQUATIONS, USING A STABILIZED EXPLICIT FINITE DIFFERENCE SCHEME MARCHING BACKWARD IN TIME.
    Carasso AS
    Inverse Probl Sci Eng; 2020; 28(7):. PubMed ID: 34131431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Existence and Weak-Strong Uniqueness for Chemotaxis Compressible Navier-Stokes Equations Modeling Vascular Network Formation.
    Huo X; Jüngel A
    J Math Fluid Mech; 2024; 26(1):11. PubMed ID: 38261880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radial Basis Function Finite Difference Method Based on Oseen Iteration for Solving Two-Dimensional Navier-Stokes Equations.
    Mu L; Feng X
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. POSTPROCESSING MIXED FINITE ELEMENT METHODS FOR SOLVING CAHN-HILLIARD EQUATION: METHODS AND ERROR ANALYSIS.
    Wang W; Chen L; Zhou J
    J Sci Comput; 2016 May; 67(2):724-746. PubMed ID: 27110063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Analysis and Comparison of Three Iterative Methods Based on Finite Element for the 2D/3D Stationary Micropolar Fluid Equations.
    Xing X; Liu D
    Entropy (Basel); 2022 Apr; 24(5):. PubMed ID: 35626514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No Existence and Smoothness of Solution of the Navier-Stokes Equation.
    Dou HS
    Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations.
    Chen X; Fried E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046317. PubMed ID: 18999536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier-Stokes equations and the finite element method.
    de Vries MP; Hamburg MC; Schutte HK; Verkerke GJ; Veldman AE
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2077-83. PubMed ID: 12703718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A correspondence between the multifractal model of turbulence and the Navier-Stokes equations.
    Dubrulle B; Gibbon JD
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210092. PubMed ID: 35034496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.