These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37238547)
1. A Multi-Agent Deep Reinforcement Learning-Based Popular Content Distribution Scheme in Vehicular Networks. Chen W; Huang X; Guan Q; Zhao S Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238547 [TBL] [Abstract][Full Text] [Related]
2. Energy-Efficient Resource Allocation Based on Deep Q-Network in V2V Communications. Han D; So J Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772334 [TBL] [Abstract][Full Text] [Related]
3. Efficient content caching for 5G assisted vehicular networks. Ahmed F; Alsamani B; Alkhathami M; Alsadie D; Alosaimi N; Alenzi B; Nkenyereye L Sci Rep; 2024 Feb; 14(1):4012. PubMed ID: 38369545 [TBL] [Abstract][Full Text] [Related]
4. Multiple Precaching Vehicle Selection Scheme Based on Set Ranking in Intermittently Connected Vehicular Networks. Nam Y; Bang J; Choi H; Shin Y; Oh S; Lee E Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447654 [TBL] [Abstract][Full Text] [Related]
5. Sensing Traffic Density Combining V2V and V2I Wireless Communications. Sanguesa JA; Barrachina J; Fogue M; Garrido P; Martinez FJ; Cano JC; Calafate CT; Manzoni P Sensors (Basel); 2015 Dec; 15(12):31794-810. PubMed ID: 26694405 [TBL] [Abstract][Full Text] [Related]
6. A 5G V2X Ecosystem Providing Internet of Vehicles. Storck CR; Duarte-Figueiredo F Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30699926 [TBL] [Abstract][Full Text] [Related]
7. Research on a Task Offloading Strategy for the Internet of Vehicles Based on Reinforcement Learning. Xiao S; Wang S; Zhuang J; Wang T; Liu J Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577265 [TBL] [Abstract][Full Text] [Related]
8. Internet of Vehicles and Cost-Effective Traffic Signal Control. Ahn S; Choi J Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30871260 [TBL] [Abstract][Full Text] [Related]
9. Privacy-Preserving Vehicular Rogue Node Detection Scheme for Fog Computing. Al-Otaibi B; Al-Nabhan N; Tian Y Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823532 [TBL] [Abstract][Full Text] [Related]
10. Intelligent Resource Allocation for V2V Communication with Spectrum-Energy Efficiency Maximization. Xu C; Wang S; Song P; Li K; Song T Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571579 [TBL] [Abstract][Full Text] [Related]
11. Optimized Distributed Proactive Caching Based on Movement Probability of Vehicles in Content-Centric Vehicular Networks. Oh S; Park S; Shin Y; Lee E Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591034 [TBL] [Abstract][Full Text] [Related]
12. Deep Learning for Joint Adaptations of Transmission Rate and Payload Length in Vehicular Networks. Elwekeil M; Wang T; Zhang S Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841569 [TBL] [Abstract][Full Text] [Related]
13. A Software-Defined Directional Q-Learning Grid-Based Routing Platform and Its Two-Hop Trajectory-Based Routing Algorithm for Vehicular Ad Hoc Networks. Yang CP; Yen CE; Chang IC Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365920 [TBL] [Abstract][Full Text] [Related]
14. Deep Reinforcement Learning for Edge Caching with Mobility Prediction in Vehicular Networks. Choi Y; Lim Y Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772771 [TBL] [Abstract][Full Text] [Related]
15. An Internet of Vehicles (IoV) Access Gateway Design Considering the Efficiency of the In-Vehicle Ethernet Backbone. Kim DY; Jung M; Kim S Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375748 [TBL] [Abstract][Full Text] [Related]
16. Mobility-Aware Proactive Edge Caching Optimization Scheme in Information-Centric IoV Networks. Musa SS; Zennaro M; Libsie M; Pietrosemoli E Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214288 [TBL] [Abstract][Full Text] [Related]
17. Beam management optimization for V2V communications based on deep reinforcement learning. Ye J; Ge X Sci Rep; 2023 Nov; 13(1):20440. PubMed ID: 37993523 [TBL] [Abstract][Full Text] [Related]
18. A Cascaded Multi-Agent Reinforcement Learning-Based Resource Allocation for Cellular-V2X Vehicular Platooning Networks. Narayanasamy I; Rajamanickam V Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275567 [TBL] [Abstract][Full Text] [Related]
19. Deep Reinforcement Learning-Empowered Resource Allocation for Mobile Edge Computing in Cellular V2X Networks. Li D; Xu S; Li P Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430386 [TBL] [Abstract][Full Text] [Related]
20. An edge communication based probabilistic caching for transient content distribution in vehicular networks. Gupta D; Rani S; Tiwari B; Gadekallu TR Sci Rep; 2023 Mar; 13(1):3614. PubMed ID: 36869106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]