These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37238865)

  • 81. High-Resolution Transcriptome Atlas and Improved Genome Assembly of Common Buckwheat,
    Penin AA; Kasianov AS; Klepikova AV; Kirov IV; Gerasimov ES; Fesenko AN; Logacheva MD
    Front Plant Sci; 2021; 12():612382. PubMed ID: 33815435
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Distribution of Vitamin E, squalene, epicatechin, and rutin in common buckwheat plants (Fagopyrum esculentum Moench).
    Kalinova J; Triska J; Vrchotova N
    J Agric Food Chem; 2006 Jul; 54(15):5330-5. PubMed ID: 16848513
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Pseudocereals: a novel source of biologically active peptides.
    Morales D; Miguel M; Garcés-Rimón M
    Crit Rev Food Sci Nutr; 2021; 61(9):1537-1544. PubMed ID: 32406747
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Identification and Bioaccessibility of Maillard Reaction Products and Phenolic Compounds in Buckwheat Biscuits Formulated from Flour Fermented by
    Wronkowska M; Wiczkowski W; Topolska J; Szawara-Nowak D; Piskuła MK; Zieliński H
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985718
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Sulphur interferes with selenium accumulation in Tartary buckwheat plants.
    Golob A; Gadžo D; Stibilj V; Djikić M; Gavrić T; Kreft I; Germ M
    Plant Physiol Biochem; 2016 Nov; 108():32-36. PubMed ID: 27404132
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The presence of D-fagomine in the human diet from buckwheat-based foodstuffs.
    Amézqueta S; Galán E; Vila-Fernández I; Pumarola S; Carrascal M; Abian J; Ribas-Barba L; Serra-Majem L; Torres JL
    Food Chem; 2013 Feb; 136(3-4):1316-21. PubMed ID: 23194529
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Comparative metabolomics study of Tartary (Fagopyrum tataricum (L.) Gaertn) and common (Fagopyrum esculentum Moench) buckwheat seeds.
    Li H; Lv Q; Liu A; Wang J; Sun X; Deng J; Chen Q; Wu Q
    Food Chem; 2022 Mar; 371():131125. PubMed ID: 34563971
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective.
    Joshi DC; Zhang K; Wang C; Chandora R; Khurshid M; Li J; He M; Georgiev MI; Zhou M
    Biotechnol Adv; 2020; 39():107479. PubMed ID: 31707074
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Genetic and genomic research for the development of an efficient breeding system in heterostylous self-incompatible common buckwheat (Fagopyrum esculentum).
    Matsui K; Yasui Y
    Theor Appl Genet; 2020 May; 133(5):1641-1653. PubMed ID: 32152716
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Phytochemicals and Antioxidant Activity in Oat-Buckwheat Dough and Cookies with Added Spices or Herbs.
    Starowicz M; Arpaci S; Topolska J; Wronkowska M
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33919764
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Effect of infrared roasting on antioxidant activity, phenolic composition and Maillard reaction products of Tartary buckwheat varieties.
    Bhinder S; Singh B; Kaur A; Singh N; Kaur M; Kumari S; Yadav MP
    Food Chem; 2019 Jul; 285():240-251. PubMed ID: 30797341
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Buckwheat Secondary Metabolites: Potential Antifungal Agents.
    Koval D; Plocková M; Kyselka J; Skřivan P; Sluková M; Horáčková Š
    J Agric Food Chem; 2020 Oct; 68(42):11631-11643. PubMed ID: 32985180
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Tartary buckwheat database (TBD): an integrative platform for gene analysis of and biological information on Tartary buckwheat.
    Liu M; Sun W; Ma Z; Hu Y; Chen H
    J Zhejiang Univ Sci B; 2021 Nov; 22(11):954-958. PubMed ID: 34783225
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Effect of steam parboiling and hot soaking treatments on milling yield, physical, physicochemical, bioactive and digestibility properties of buckwheat (
    Roy M; Dutta H; Jaganmohan R; Choudhury M; Kumar N; Kumar A
    J Food Sci Technol; 2019 Jul; 56(7):3524-3533. PubMed ID: 31274920
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Nutritional properties of starch in buckwheat noodles.
    Kreft I; Skrabanja V
    J Nutr Sci Vitaminol (Tokyo); 2002 Feb; 48(1):47-50. PubMed ID: 12026188
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients.
    Costantini L; Lukšič L; Molinari R; Kreft I; Bonafaccia G; Manzi L; Merendino N
    Food Chem; 2014 Dec; 165():232-40. PubMed ID: 25038671
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Germinated Buckwheat: Effects of Dehulling on Phenolics Profile and Antioxidant Activity of Buckwheat Seeds.
    Živković A; Polak T; Cigić B; Požrl T
    Foods; 2021 Apr; 10(4):. PubMed ID: 33915814
    [TBL] [Abstract][Full Text] [Related]  

  • 98.
    Huang Y; Li Z; Wang C; Zou C; Wen W; Shao J; Zhu X
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31337110
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effects of nitrogen level on the physicochemical properties of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) starch.
    Zhang W; Yang Q; Xia M; Bai W; Wang P; Gao X; Li J; Feng B; Gao J
    Int J Biol Macromol; 2019 May; 129():799-808. PubMed ID: 30731161
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Aqua-culture improved buckwheat sprouts with more abundant precious nutrients and hypolipidemic activity.
    Peng CC; Chen KC; Yang YL; Lin LY; Peng RY
    Int J Food Sci Nutr; 2009; 60 Suppl 1():232-45. PubMed ID: 19568972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.