These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 37239132)

  • 41. Breaking Barriers: Unveiling Sex-Related Differences in Cerebrospinal Fluid Analysis-A Narrative Review.
    Candeloro R; Ferri C; Bellini T; Pugliatti M; Castellazzi M
    Biology (Basel); 2024 Jun; 13(6):. PubMed ID: 38927300
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Water homeostasis in the brain: basic concepts.
    Kimelberg HK
    Neuroscience; 2004; 129(4):851-60. PubMed ID: 15561403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Potential Roles of Blood-Brain Barrier and Blood-Cerebrospinal Fluid Barrier in Maintaining Brain Manganese Homeostasis.
    McCabe SM; Zhao N
    Nutrients; 2021 May; 13(6):. PubMed ID: 34072120
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Elevated Cerebrospinal Fluid Proteins and Albumin Determine a Poor Prognosis for Spinal Amyotrophic Lateral Sclerosis.
    Assialioui A; Domínguez R; Ferrer I; Andrés-Benito P; Povedano M
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232365
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Blood-Brain Barrier and Intrathecal Immune Response in patients with neuroinfections.
    Valkov T; Hristova J; Tcherveniakova T; Svinarov D
    Infez Med; 2017 Dec; 25(4):320-325. PubMed ID: 29286010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Emergence and Developmental Roles of the Cerebrospinal Fluid System.
    Fame RM; Lehtinen MK
    Dev Cell; 2020 Feb; 52(3):261-275. PubMed ID: 32049038
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facilitating drug delivery in the central nervous system by opening the blood-cerebrospinal fluid barrier with a single low energy shockwave pulse.
    Kung Y; Chen KY; Liao WH; Hsu YH; Wu CH; Hsiao MY; Huang AP; Chen WS
    Fluids Barriers CNS; 2022 Jan; 19(1):3. PubMed ID: 34991647
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differentiating neurosarcoidosis from multiple sclerosis using combined analysis of basic CSF parameters and MRZ reaction.
    Vlad B; Neidhart S; Hilty M; Ziegler M; Jelcic I
    Front Neurol; 2023; 14():1135392. PubMed ID: 37034091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Blood-cerebrospinal fluid barrier: another site disrupted during experimental cerebral malaria caused by Plasmodium berghei ANKA.
    Ngo-Thanh H; Sasaki T; Suzue K; Yokoo H; Isoda K; Kamitani W; Shimokawa C; Hisaeda H; Imai T
    Int J Parasitol; 2020 Dec; 50(14):1167-1175. PubMed ID: 32882285
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The ontogenetic development of concentration differences for protein and ions between plasma and cerebrospinal fluid in rabbits and rats.
    Amtorp O; Sorensen SC
    J Physiol; 1974 Dec; 243(2):387-400. PubMed ID: 4141371
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Current concepts on communication between the central nervous system and peripheral immunity via lymphatics: what roles do lymphatics play in brain and spinal cord disease pathogenesis?
    Hsu M; Sandor M; Fabry Z
    Biol Futur; 2021 Mar; 72(1):45-60. PubMed ID: 34554497
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Molecular diffusion/cerebrospinal fluid flow theory].
    Dorta-Contreras AJ; Reiber H
    Rev Neurol; 2004 Sep 16-30; 39(6):564-9. PubMed ID: 15467996
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (Part 2).
    Kusuhara H; Sugiyama Y
    Drug Discov Today; 2001 Feb; 6(4):206-212. PubMed ID: 11173268
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function.
    Nelles DG; Hazrati LN
    Brain Commun; 2022; 4(6):fcac288. PubMed ID: 36415662
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: A review.
    Bellotti E; Schilling AL; Little SR; Decuzzi P
    J Control Release; 2021 Jan; 329():16-35. PubMed ID: 33259851
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lipoprotein(a) in the cerebrospinal fluid of neurological patients with blood-cerebrospinal fluid barrier dysfunction.
    Pepe G; Chimienti G; Liuzzi GM; Lamanuzzi BL; Nardulli M; Lolli F; Anglés-Cano E; Matà S
    Clin Chem; 2006 Nov; 52(11):2043-8. PubMed ID: 16990412
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acting centrally or peripherally: A renewed interest in the central nervous system penetration of disease-modifying drugs in multiple sclerosis.
    Correale J; Halfon MJ; Jack D; Rubstein A; Villa A
    Mult Scler Relat Disord; 2021 Nov; 56():103264. PubMed ID: 34547609
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Kinetic analysis of the disposition of hydrophilic drugs in the central nervous system (CNS): prediction of the CNS disposition from the transport properties in the blood-brain and blood-cerebrospinal fluid barriers].
    Suzuki H; Sugiyama Y
    Yakugaku Zasshi; 1994 Dec; 114(12):950-71. PubMed ID: 7869236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of the effect of oral omeprazole on canine cerebrospinal fluid production: A pilot study.
    Girod M; Allerton F; Gommeren K; Tutunaru AC; de Marchin J; Van Soens I; Ramery E; Peeters D
    Vet J; 2016 Mar; 209():119-24. PubMed ID: 26852945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Importance of urgent cerebrospinal fluid examination for early diagnosis of central nervous system infections].
    Kelbich P; Koudelková M; Machová H; Tomaskovic M; Vachata P; Kotalíková P; Chmelíková V; Hanuljaková E
    Klin Mikrobiol Infekc Lek; 2007 Feb; 13(1):9-20. PubMed ID: 17417750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.