These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37240)
21. Mechanism of Na+/proline symport in Escherichia coli: reappraisal of the effect of cation binding to the Na+/proline symport carrier. Yamato I; Anraku Y J Membr Biol; 1990 Mar; 114(2):143-51. PubMed ID: 2160541 [TBL] [Abstract][Full Text] [Related]
22. Lithium ion-sugar cotransport via the melibiose transport system in Escherichia coli. Measurement of Li+ transport and specificity. Tsuchiya T; Oho M; Shiota-Niiya S J Biol Chem; 1983 Nov; 258(21):12765-7. PubMed ID: 6355091 [TBL] [Abstract][Full Text] [Related]
23. An ecf mutation in Escherichia coli pleiotropically affecting energy coupling in active transport but not generation or maintenance of membrane potential. Hong JS J Biol Chem; 1977 Dec; 252(23):8582-8. PubMed ID: 21876 [No Abstract] [Full Text] [Related]
24. Restoration of active transport in an Mg2+-adenosine triphosphatase-deficient mutant of Escherichia coli. Rosen BP J Bacteriol; 1973 Dec; 116(3):1124-9. PubMed ID: 4270946 [TBL] [Abstract][Full Text] [Related]
25. K+-dependent Na+ transport driven by respiration in Escherichia coli cells and membrane vesicles. Verkhovskaya ML; Verkhovsky MI; Wikström M Biochim Biophys Acta; 1996 Mar; 1273(3):207-16. PubMed ID: 8616158 [TBL] [Abstract][Full Text] [Related]
26. Facilitated transport of calcium by cells and subcellular membranes of Bacillus subtilis and Escherichia coli. Silver S; Toth K; Scribner H J Bacteriol; 1975 Jun; 122(3):880-5. PubMed ID: 807559 [TBL] [Abstract][Full Text] [Related]
27. Kinetics of lactose transport into Escherichia coli in the presence and absence of a protonmotive force. Page MG; West IC FEBS Lett; 1980 Nov; 120(2):187-91. PubMed ID: 7002613 [No Abstract] [Full Text] [Related]
28. Carbonyl cyanide-m-chlorophenyl hydrazone-resistant Escherichia coli mutant that exhibits a temperature-sensitive unc phenotype. Ito M; Ohnishi Y; Itoh S; Nishimura M J Bacteriol; 1983 Jan; 153(1):310-5. PubMed ID: 6217194 [TBL] [Abstract][Full Text] [Related]
29. Extrusion of sodium ions energized by respiration and glycolysis in Escherichia coli. Tsuchiya T; Takeda K J Biochem; 1979 Jul; 86(1):225-30. PubMed ID: 39066 [TBL] [Abstract][Full Text] [Related]
30. Energetics of tetracycline transport into Escherichia coli. Smith MC; Chopra I Antimicrob Agents Chemother; 1984 Apr; 25(4):446-9. PubMed ID: 6375554 [TBL] [Abstract][Full Text] [Related]
31. Proton motive force is not obligatory for growth of Escherichia coli. Kinoshita N; Unemoto T; Kobayashi H J Bacteriol; 1984 Dec; 160(3):1074-7. PubMed ID: 6389506 [TBL] [Abstract][Full Text] [Related]
32. Escherichia coli mutants resistant to uncouplers of oxidative phosphorylation. Jones MR; Beechey RB J Gen Microbiol; 1987 Oct; 133(10):2759-66. PubMed ID: 3329677 [TBL] [Abstract][Full Text] [Related]
33. An evaluation of N-phenyl-1-naphthylamine as a probe of membrane energy state in Escherichia coli. Cramer WA; Postma PW; Helgerson SL Biochim Biophys Acta; 1976 Dec; 449(3):401-11. PubMed ID: 793617 [TBL] [Abstract][Full Text] [Related]
34. [Electrochemical potential difference for H+-ions as a regulator of redox profile of membrane during ATP-dependent ion transport in E. coli]. Bagramian KA; Martirosov SM Biofizika; 1990; 35(4):624-7. PubMed ID: 2245226 [TBL] [Abstract][Full Text] [Related]
35. Mode of action of colicins Ia, E1 and K. Konisky J; Tokuda H Zentralbl Bakteriol Orig A; 1979 Jun; 244(1):105-20. PubMed ID: 388932 [TBL] [Abstract][Full Text] [Related]
36. ATP synthesis driven by protonmotive force imposed across Escherichia coli cell membranes. Grinius L; Slusnyte R; Griniuviene B FEBS Lett; 1975 Oct; 57(3):290-3. PubMed ID: 241667 [No Abstract] [Full Text] [Related]
37. Effects of monovalent ions on the transport of noradrenaline across the plasma membrane of neuronal cells (PC-12 cells). Harder R; Bönisch H J Neurochem; 1985 Oct; 45(4):1154-62. PubMed ID: 4031884 [TBL] [Abstract][Full Text] [Related]
38. Methylammonium uptake by Escherichia coli: evidence for a bacterial NH4+ transport system. Stevenson R; Silver S Biochem Biophys Res Commun; 1977 Apr; 75(4):1133-9. PubMed ID: 16600 [No Abstract] [Full Text] [Related]
39. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium. Trchounian A; Ohanjayan E; Zakharyan E Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260 [TBL] [Abstract][Full Text] [Related]
40. The respiration-driven active sodium transport system in E. coli does not function with lithium. Verkhovskaya ML; Verkhovsky MI; Wikström M FEBS Lett; 1996 Jun; 388(2-3):217-8. PubMed ID: 8690090 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]