These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 37240096)
1. Comparative Anatomical and Transcriptomics Reveal the Larger Cell Size as a Major Contributor to Larger Fruit Size in Apricot. Huang M; Zhu X; Bai H; Wang C; Gou N; Zhang Y; Chen C; Yin M; Wang L; Wuyun T Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240096 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome and Metabolome Analyses Reveal Sugar and Acid Accumulation during Apricot Fruit Development. Gou N; Chen C; Huang M; Zhang Y; Bai H; Li H; Wang L; Wuyun T Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069317 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis reveals the mechanism of different fruit appearance between apricot (Armeniaca vulgaris Lam.) and its seedling. Liu H; Zhang X; Li J; Zhang G; Fang H; Li Y Mol Biol Rep; 2023 Oct; 50(10):7995-8003. PubMed ID: 37540452 [TBL] [Abstract][Full Text] [Related]
4. Identification of key genes and regulators associated with carotenoid metabolism in apricot (Prunus armeniaca) fruit using weighted gene coexpression network analysis. Zhang L; Zhang Q; Li W; Zhang S; Xi W BMC Genomics; 2019 Nov; 20(1):876. PubMed ID: 31747897 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional regulatory networks controlling taste and aroma quality of apricot (Prunus armeniaca L.) fruit during ripening. Zhang Q; Feng C; Li W; Qu Z; Zeng M; Xi W BMC Genomics; 2019 Jan; 20(1):45. PubMed ID: 30646841 [TBL] [Abstract][Full Text] [Related]
6. Whole Transcriptome Analyses of Apricots and Japanese Plum Fruits after 1-MCP (Ethylene-Inhibitor) and Ethrel (Ethylene-Precursor) Treatments Reveal New Insights into the Physiology of the Ripening Process. Salazar JA; Ruiz D; Zapata P; Martínez-García PJ; Martínez-Gómez P Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232348 [TBL] [Abstract][Full Text] [Related]
7. Monitoring Apricot ( García-Gómez BE; Salazar JA; Egea JA; Rubio M; Martínez-Gómez P; Ruiz D Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562966 [TBL] [Abstract][Full Text] [Related]
8. Comparative transcriptome profiling and morphology provide insights into endocarp cleaving of apricot cultivar (Prunus armeniaca L.). Zhang X; Zhang L; Zhang Q; Xu J; Liu W; Dong W BMC Plant Biol; 2017 Apr; 17(1):72. PubMed ID: 28399812 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis insight into ethylene metabolism and pectinase activity of apricot (Prunus armeniaca L.) development and ripening. Xu M; Zhou W; Geng W; Zhao S; Pan Y; Fan G; Zhang S; Wang Y; Liao K Sci Rep; 2021 Jun; 11(1):13569. PubMed ID: 34193901 [TBL] [Abstract][Full Text] [Related]
10. Monitoring Fruit Growth and Development in Apricot ( Ortuño-Hernández G; Sánchez M; Ruiz D; Martínez-Gómez P; Salazar JA Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201767 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome sequencing of the apricot (Prunus armeniaca L.) and identification of differentially expressed genes involved in drought stress. Liu J; Deng JL; Tian Y Phytochemistry; 2020 Mar; 171():112226. PubMed ID: 31923721 [TBL] [Abstract][Full Text] [Related]
12. Integrated transcriptome and physiological analysis revealed core transcription factors that promote flavonoid biosynthesis in apricot in response to pathogenic fungal infection. Chen T; Cao H; Wang M; Qi M; Sun Y; Song Y; Yang Q; Meng D; Lian N Planta; 2023 Aug; 258(3):64. PubMed ID: 37555984 [TBL] [Abstract][Full Text] [Related]
13. Identification of Key Genes Controlling Carotenoid Metabolism during Apricot Fruit Development by Integrating Metabolic Phenotypes and Gene Expression Profiles. Zhou W; Zhao S; Xu M; Niu Y; Nasier M; Fan G; Quan S; Zhang S; Wang Y; Liao K J Agric Food Chem; 2021 Aug; 69(32):9472-9483. PubMed ID: 34347458 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide association links candidate genes to fruit firmness, fruit flesh color, flowering time, and soluble solid content in apricot (Prunus armeniaca L.). Ferik F; Ates D; Ercisli S; Erdogan A; Orhan E; Tanyolac MB Mol Biol Rep; 2022 Jun; 49(6):5283-5291. PubMed ID: 34741707 [TBL] [Abstract][Full Text] [Related]
15. Identification of key gene networks related to the freezing resistance of apricot kernel pistils by integrating hormone phenotypes and transcriptome profiles. Liu X; Xu H; Yu D; Bi Q; Yu H; Wang L BMC Plant Biol; 2022 Nov; 22(1):531. PubMed ID: 36380302 [TBL] [Abstract][Full Text] [Related]
16. BCH1 expression pattern contributes to the fruit carotenoid diversity between peach and apricot. Wang P; Lu S; Jing R; Hyden B; Li L; Zhao X; Zhang L; Han Y; Zhang X; Xu J; Chen H; Cao H Plant Physiol Biochem; 2023 Apr; 197():107647. PubMed ID: 36940521 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome analysis of flower bud identified genes associated with pistil abortions between long branches and spur twigs in apricots (Prunus armeniaca L.). Zhang QP; Wei X PLoS One; 2022; 17(8):e0273109. PubMed ID: 36018857 [TBL] [Abstract][Full Text] [Related]
18. Occurrence, Distribution, and Genomic Characteristics of Plum Pox Virus Isolates from Common Apricot ( Zhou J; Xing F; Wang H; Li S Plant Dis; 2021 Nov; 105(11):3474-3480. PubMed ID: 33858186 [TBL] [Abstract][Full Text] [Related]
19. Analyzing Differentially Expressed Genes and Pathways Associated with Pistil Abortion in Japanese Apricot via RNA-Seq. Shi T; Iqbal S; Ayaz A; Bai Y; Pan Z; Ni X; Hayat F; Saqib Bilal M; Khuram Razzaq M; Gao Z Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32942711 [TBL] [Abstract][Full Text] [Related]
20. Resistance to Plum Pox Virus (PPV) in apricot (Prunus armeniaca L.) is associated with down-regulation of two MATHd genes. Zuriaga E; Romero C; Blanca JM; Badenes ML BMC Plant Biol; 2018 Jan; 18(1):25. PubMed ID: 29374454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]