These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37241295)

  • 1. Numerical Analysis on Fatigue Crack Growth at Negative and Positive Stress Ratios.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method.
    Alshoaibi AM
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite Element Simulation of a Crack Growth in the Presence of a Hole in the Vicinity of the Crack Trajectory.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Finite Element Modeling of Linear Elastic Fatigue Crack Growth.
    Alshoaibi AM; Bashiri AH
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation and experimental verification of fatigue crack propagation in high-strength bolts based on fracture mechanics.
    Zhang P; Li J; Zhao Y; Li J
    Sci Prog; 2023; 106(4):368504231211660. PubMed ID: 38058131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crack propagation analysis and fatigue life assessment of high-strength bolts based on fracture mechanics.
    Zhang P; Li J; Zhao Y; Li J
    Sci Rep; 2023 Sep; 13(1):14567. PubMed ID: 37667025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear Elastic Fracture Mechanics Assessment of a Gas Turbine Vane.
    Orenes Moreno B; Bessone A; Solazzi S; Vanti F; Bagnera F; Riva A; Botto D
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Finite Element Model for Simulating Crack Growth in the Presence of Holes.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced numerical simulations considering crack orientation for fatigue damage quantification using nonlinear guided waves.
    Lee YF; Lu Y
    Ultrasonics; 2022 Aug; 124():106738. PubMed ID: 35358841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue Crack Growth Behavior of CP-Ti Cruciform Specimens with Mixed Mode I-II Crack under Biaxial Loading.
    Liu JY; Bao WJ; Zhao JY; Zhou CY
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics).
    Masuda K; Ishihara S; Shibata H; Oguma N
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic Propagation of Fatigue Cracks in Welded Joints of Steel Bridge Decks under Simulated Traffic Loading.
    Lu N; Liu J; Wang H; Yuan H; Luo Y
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Dynamic Bayesian Network-Based Fatigue Crack Propagation Modeling Considering Initial Defects.
    Xu Y; Zhu B; Zhang Z; Chen J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Fatigue Strength and Reliability of Lower Limb Arterial Stent at Different Vascular Stenosis Rates and Stent-to-Artery Ratios.
    Ma S; Feng H; Feng H; Su J
    Ann Biomed Eng; 2023 Jun; 51(6):1136-1146. PubMed ID: 36939956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical fatigue of whole rabbit-tibiae under combined compression-torsional loading is better explained by strained volume than peak strain magnitude.
    Haider IT; Lee M; Page R; Smith D; Edwards WB
    J Biomech; 2021 Jun; 122():110434. PubMed ID: 33910082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of sub-critical fatigue crack propagation in a restorative composite.
    Loughran GM; Versluis A; Douglas WH
    Dent Mater; 2005 Mar; 21(3):252-61. PubMed ID: 15705432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Failure Analysis and Fatigue Life Prediction of Shield Machine Cutterhead.
    Li J; Zhang Z; Liu C; Su K; Guo J
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Stress Intensity Factor for Aluminum 6062 T6 Material in L-Shaped Lower Control Arm (LCA) Design Using Extended Finite Element Analysis.
    El Fakkoussi S; Vlase S; Marin M; Koubaiti O; Elkhalfi A; Moustabchir H
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Adaptive Mesh Generation Algorithm: A Solution for Simulating 2D Crack Growth Problems.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.