These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37241334)

  • 1. In Situ Reactive Formation of Mixed Oxides in Additively Manufactured Cobalt Alloy.
    Lopez J; Cerne R; Ho D; Madigan D; Shen Q; Yang B; Corpus J; Jarosinski W; Wang H; Zhang X
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and Mechanical Properties of a Novel Al-Mg-Sc-Ti Alloy Fabricated by Laser Powder Bed Fusion.
    Shu Z; Liu Y
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on the Microstructure and Mechanical Properties of the Ti-Ta Alloy with Unmelted Ta Particles by Laser Powder Bed Fusion.
    Gao M; He D; Cui L; Ma L; Tan Z; Zhou Z; Guo X
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D printable alloy designed for extreme environments.
    Smith TM; Kantzos CA; Zarkevich NA; Harder BJ; Heczko M; Gradl PR; Thompson AC; Mills MJ; Gabb TP; Lawson JW
    Nature; 2023 May; 617(7961):513-518. PubMed ID: 37076622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of silicon content on the microstructure evolution, mechanical properties, and biocompatibility of β-type TiNbZrTa alloys fabricated by laser powder bed fusion.
    Luo X; Yang C; Li RY; Wang H; Lu HZ; Song T; Ma HW; Li DD; Gebert A; Li YY
    Biomater Adv; 2022 Feb; 133():112625. PubMed ID: 35523650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.
    Bär F; Berger L; Jauer L; Kurtuldu G; Schäublin R; Schleifenbaum JH; Löffler JF
    Acta Biomater; 2019 Oct; 98():36-49. PubMed ID: 31132536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Ferritic ODS Steels Obtained by Laser Additive Manufacturing.
    Autones L; Aubry P; Ribis J; Leguy H; Legris A; de Carlan Y
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Heat Treatments on Microstructure and Mechanical Properties of Ti⁻26Nb Alloy Elaborated In Situ by Laser Additive Manufacturing with Ti and Nb Mixed Powder.
    Wei J; Sun H; Zhang D; Gong L; Lin J; Wen C
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30585185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Powder Bed Temperature on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion.
    Xing LL; Zhang WJ; Zhao CC; Gao WQ; Shen ZJ; Liu W
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33924888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circumventing Solidification Cracking Susceptibility in Al-Cu Alloys Prepared by Laser Powder Bed Fusion.
    Xi L; Lu Q; Gu D; Cao S; Zhang H; Kaban I; Sarac B; Prashanth KG; Eckert J
    3D Print Addit Manuf; 2024 Apr; 11(2):e731-e742. PubMed ID: 38689899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Situ Alloy Formation of a WMoTaNbV Refractory Metal High Entropy Alloy by Laser Powder Bed Fusion (PBF-LB/M).
    Huber F; Bartels D; Schmidt M
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective Platform Heating for Laser Powder Bed Fusion of an Al-Mn-Sc-Based Alloy.
    Bayoumy D; Boll T; Karapuzha AS; Wu X; Zhu Y; Huang A
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process Optimization and Tailored Mechanical Properties of a Nuclear Zr-4 Alloy Fabricated via Laser Powder Bed Fusion.
    Song C; Zou Z; Yan Z; Liu F; Yang Y; Yan M; Han C
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancements in the Additive Manufacturing of Magnesium and Aluminum Alloys through Laser-Based Approach.
    Sharma SK; Grewal HS; Saxena KK; Mohammed KA; Prakash C; Davim JP; Buddhi D; Raju R; Mohan DG; Tomków J
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient production of a high-performance dispersion strengthened, multi-principal element alloy.
    Smith TM; Thompson AC; Gabb TP; Bowman CL; Kantzos CA
    Sci Rep; 2020 Jun; 10(1):9663. PubMed ID: 32541782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of process parameters on the mechanical properties of additively manufactured Zr-1Mo alloy builds.
    Sun X; Liu D; Zhou W; Nomura N; Tsutsumi Y; Hanawa T
    J Mech Behav Biomed Mater; 2020 Apr; 104():103655. PubMed ID: 32174412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additive manufacturing of NiTi shape memory alloy and its industrial applications.
    Dzogbewu TC; de Beer DJ
    Heliyon; 2024 Jan; 10(1):e23369. PubMed ID: 38163186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor.
    Dong Z; Ma Z; Yu L; Liu Y
    Nat Commun; 2021 Aug; 12(1):5052. PubMed ID: 34417455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructural Evolution of Post-Processed Hastelloy X Alloy Fabricated by Laser Powder Bed Fusion.
    Marchese G; Bassini E; Aversa A; Lombardi M; Ugues D; Fino P; Biamino S
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30764476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.