These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37241431)

  • 1. The Formation of All-Silk Composites and Time-Temperature Superposition.
    King JA; Zhang X; Ries ME
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties and toughening mechanisms of natural silkworm silks and their composites.
    Yang K; Guan J; Shao Z; Ritchie RO
    J Mech Behav Biomed Mater; 2020 Oct; 110():103942. PubMed ID: 32957236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
    Kapoor S; Kundu SC
    Acta Biomater; 2016 Feb; 31():17-32. PubMed ID: 26602821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials.
    Huang W; Ebrahimi D; Dinjaski N; Tarakanova A; Buehler MJ; Wong JY; Kaplan DL
    Acc Chem Res; 2017 Apr; 50(4):866-876. PubMed ID: 28191922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Mechanical Toughness of Epoxy-Resin Composites Using Natural Silk Reinforcements.
    Yang K; Wu S; Guan J; Shao Z; Ritchie RO
    Sci Rep; 2017 Sep; 7(1):11939. PubMed ID: 28931868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Strength Collagen-Based Composite Films Regulated by Water-Soluble Recombinant Spider Silk Proteins and Water Annealing.
    Peng X; Cui Y; Chen J; Gao C; Yang Y; Yu W; Rai K; Zhang M; Nian R; Bao Z; Sun Y
    ACS Biomater Sci Eng; 2022 Aug; 8(8):3341-3353. PubMed ID: 35894734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites.
    Li L; Yang H; Li X; Yan S; Xu A; You R; Zhang Q
    Carbohydr Polym; 2021 Feb; 253():117214. PubMed ID: 33278979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silkworm silk-based materials and devices generated using bio-nanotechnology.
    Huang W; Ling S; Li C; Omenetto FG; Kaplan DL
    Chem Soc Rev; 2018 Aug; 47(17):6486-6504. PubMed ID: 29938722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible bio-composites based on silks and celluloses.
    Heo S; Yun YS; Cho SY; Jin HJ
    J Nanosci Nanotechnol; 2012 Jan; 12(1):811-4. PubMed ID: 22524062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of Animal Silks.
    Zhang W; Fan Y
    Methods Mol Biol; 2021; 2347():3-15. PubMed ID: 34472050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating tough Antheraea pernyi silk and strong carbon fibres for impact-critical structural composites.
    Yang K; Guan J; Numata K; Wu C; Wu S; Shao Z; Ritchie RO
    Nat Commun; 2019 Aug; 10(1):3786. PubMed ID: 31439833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silk fibroin microfiber-reinforced polycaprolactone composites with enhanced biodegradation and biological characteristics.
    Bojedla SSR; Chameettachal S; Yeleswarapu S; Nikzad M; Masood SH; Pati F
    J Biomed Mater Res A; 2022 Jul; 110(7):1386-1400. PubMed ID: 35261161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials.
    Xu Z; Ma Y; Dai H; Tan S; Han B
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers.
    Mobini S; Taghizadeh-Jahed M; Khanmohammadi M; Moshiri A; Naderi MM; Heidari-Vala H; Ashrafi Helan J; Khanjani S; Springer A; Akhondi MM; Kazemnejad S
    J Biomater Appl; 2016 Jan; 30(6):793-809. PubMed ID: 26475850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels.
    Zhao Y; Zhu ZS; Guan J; Wu SJ
    Acta Biomater; 2021 Apr; 125():57-71. PubMed ID: 33601067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the microstructure and mechanical properties of Bombyx mori and Antheraea pernyi cocoon composites.
    Guan J; Zhu W; Liu B; Yang K; Vollrath F; Xu J
    Acta Biomater; 2017 Jan; 47():60-70. PubMed ID: 27693687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and Characterization of Composite Blends Based on Polylactic Acid/Polycaprolactone and Silk.
    Balali S; Davachi SM; Sahraeian R; Shiroud Heidari B; Seyfi J; Hejazi I
    Biomacromolecules; 2018 Nov; 19(11):4358-4369. PubMed ID: 30351912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.
    Huang W; Rollett A; Kaplan DL
    Expert Opin Drug Deliv; 2015 May; 12(5):779-91. PubMed ID: 25476201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular simulations of the interfacial properties in silk-hydroxyapatite composites.
    López Barreiro D; Martín-Moldes Z; Blanco Fernández A; Fitzpatrick V; Kaplan DL; Buehler MJ
    Nanoscale; 2022 Aug; 14(30):10929-10939. PubMed ID: 35852800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Interfacial Adhesion between Natural Silk and Polycaprolactone for Fabrication of Continuous Silk Biocomposites.
    Shi R; Ye D; Ma K; Tian W; Zhao Y; Guo H; Shao Z; Guan J; Ritchie RO
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46932-46944. PubMed ID: 36194850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.