These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37241533)

  • 1. A Bio-Inspired Bistable Piezoelectric Structure for Low-Frequency Energy Harvesting Applied to Reduce Stress Concentration.
    Wu N; Fu J; Xiong C
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Energy Harvesting by Piezoelectric Bionic 'M' Shape Generating Beam Featured in Reducing Stress Concentration.
    Xiong C; Wu N; He Y; Cai Y; Zeng X; Jin P; Lai M
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Piezoelectric Energy Harvesting from Suspension Structures with Piezoelectric Layers.
    Wang M; Xia Y; Pu H; Sun Y; Ding J; Luo J; Xie S; Peng Y; Zhang Q; Li Z
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static and Dynamic Analysis of a Bistable Frequency Up-Converter Piezoelectric Energy Harvester.
    Atmeh M; Ibrahim A; Ramini A
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes.
    Park S; Kim Y; Jung H; Park JY; Lee N; Seo Y
    Sci Rep; 2017 Dec; 7(1):17290. PubMed ID: 29229966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester.
    Han B; Zhang S; Liu J; Jiang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid energy harvester inspired by bionic flapping wing structure based on magnetic levitation.
    Fan B; Fang J; Jiang S; Li C; Shao J; Liu W
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38214593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compound cantilever beam piezoelectric harvester based on wind energy excitation.
    Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of an acoustic energy harvester consisting of electro-spun polyvinylidene difluoride nanofibers.
    Zhang R; Shao H; Lin T; Wang X
    J Acoust Soc Am; 2022 Jun; 151(6):3838. PubMed ID: 35778177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Funnel Type PVDF Underwater Energy Harvester with Spiral Structure Mounted on the Harvester Support.
    Lee J; Ahn J; Jin H; Lee CH; Jeong Y; Lee K; Seo HS; Cho Y
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Energy Generation Capacity of PVDF Sensors: Effects of Sensor Geometry and Loading.
    Uddin M; Alford S; Aziz SM
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibration Energy Conversion Power Supply Based on the Piezoelectric Thin Film Planar Array.
    Wang B; Lan D; Zeng F; Li W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and evaluation of a magnetically coupled piezoelectric energy harvester with parallel connection.
    Zhang Y; Wang H; Wang L
    Rev Sci Instrum; 2023 Aug; 94(8):. PubMed ID: 37526520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.
    Hu Y; Xue H; Hu T; Hu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):148-60. PubMed ID: 18334321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on a rotary piezoelectric wind energy harvester with bilateral excitation.
    He L; Zheng X; Li W; Gu X; Han Y; Cheng G
    Rev Sci Instrum; 2023 Feb; 94(2):025004. PubMed ID: 36859045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and Experimental Investigation of a Rotational Magnetic Couple Piezoelectric Energy Harvester.
    Sun F; Dong R; Zhou R; Xu F; Mei X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.