These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37241541)

  • 1. Theoretical Analysis and Numerical Simulation of the Motion of RDX Deflagration-Driven Flyer Plate Based on Laser-Initiated Micro-Pyrotechnic Devices.
    Xian M; Zhao K; Liu X; Meng Y; Xie J; Li J; Tong L; Huang M; Wu L
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect ignition of energetic materials with laser-driven flyer plates.
    Dean SW; De Lucia FC; Gottfried JL
    Appl Opt; 2017 Jan; 56(3):B134-B141. PubMed ID: 28157876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the Energy Conversion Efficiency of a Laser-Driven Flyer by an In Situ-Fabricated Nano-absorption Layer.
    Wang L; Yan Y; Ji X; Zhang W; Jiang H; Qin W; Wang Y; Tang D
    Nanoscale Res Lett; 2020 Jun; 15(1):125. PubMed ID: 32504409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma-accelerated flyer-plates for equation of state studies.
    Fratanduono DE; Smith RF; Boehly TR; Eggert JH; Braun DG; Collins GW
    Rev Sci Instrum; 2012 Jul; 83(7):073504. PubMed ID: 22852692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments.
    Zhang X; Wang G; Zhao J; Tan F; Luo B; Sun C
    Rev Sci Instrum; 2014 May; 85(5):055110. PubMed ID: 24880418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-coupled laser-driven flyer plates system.
    Zhao XH; Zhao X; Shan GC; Gao Y
    Rev Sci Instrum; 2011 Apr; 82(4):043904. PubMed ID: 21529022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a Microflyer Driven by a Microsized Charge Combined with an Initiation Criterion.
    He X; Yang L; Dong H; Lv Z; Yan N
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CPMD investigation of α-RDX and ε-CL-20: the transition of deflagration to detonation depending on the self-produced radicals.
    Zhang T; Cheng L; Zhang J; Wang K
    Phys Chem Chem Phys; 2020 Apr; 22(14):7421-7429. PubMed ID: 32215417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplified laser-driven flyer plates for shock compression science.
    Brown KE; Shaw WL; Zheng X; Dlott DD
    Rev Sci Instrum; 2012 Oct; 83(10):103901. PubMed ID: 23126776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of Step-Shaped Laser-Driven Flyers on Fiber End Face Based on a Ti/Al Ablation Layer.
    Yuan H; Geng Y; Wang X; Wu L; Shen R
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):5326-5335. PubMed ID: 38240607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration.
    Valiev DM; Bychkov V; Akkerman V; Eriksson LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036317. PubMed ID: 19905222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deflagration to detonation transition in JP-10 mist/air mixtures in a large-scale tube.
    Li S; Liu Q; Chen X; Huang J; Li J
    J Hazard Mater; 2017 Oct; 339():100-113. PubMed ID: 28633081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments.
    Wang G; He J; Zhao J; Tan F; Sun C; Mo J; Xong X; Wu G
    Rev Sci Instrum; 2011 Sep; 82(9):095105. PubMed ID: 21974617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of deflagration flame propagation of methane-air in tube by argon gas and explosion-eliminating chamber.
    Wang Q; Xu X; Chang W; Li Z; Zhang J; Li R
    Sci Rep; 2022 Mar; 12(1):4965. PubMed ID: 35322805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental validation of rotating detonation for rocket propulsion.
    Bennewitz JW; Burr JR; Bigler BR; Burke RF; Lemcherfi A; Mundt T; Rezzag T; Plaehn EW; Sosa J; Walters IV; Schumaker SA; Ahmed KA; Slabaugh CD; Knowlen C; Hargus WA
    Sci Rep; 2023 Aug; 13(1):14204. PubMed ID: 37648704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-driven flyer plates for shock compression science: launch and target impact probed by photon Doppler velocimetry.
    Curtis AD; Banishev AA; Shaw WL; Dlott DD
    Rev Sci Instrum; 2014 Apr; 85(4):043908. PubMed ID: 24784627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on noise-vibration coupling characteristics of premixed methane-air flame propagation in a tube with an acoustic absorption material.
    Wang Q; Chang W; Liu S; Li Z; Zhu K
    RSC Adv; 2019 Sep; 9(49):28323-28329. PubMed ID: 35529608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.
    Paisley DL; Luo SN; Greenfield SR; Koskelo AC
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023902. PubMed ID: 18315311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets.
    Gauthier P; Chaland F; Masse L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):055401. PubMed ID: 15600681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic flyer in barrel imaging via high intensity short-pulse laser.
    Chu GB; Wang Y; Yan YH; Yu MH; Shui M; Tan F; Tang D; Wang W; Wang L; He B; Zhou WM
    Opt Express; 2024 Mar; 32(6):9602-9609. PubMed ID: 38571190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.