These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37241573)

  • 1. Numerical Analysis of Droplet Impacting on an Immiscible Liquid via Three-Phase Field Method.
    Hu Q; Hu F; Xu D; Zhang K
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Bouncing Behaviors of a Non-Newtonian Fluid Droplet Impacting on a Hydrophobic Surface.
    Liu H; Zheng N; Chen J; Yang D; Wang J
    Langmuir; 2023 Mar; 39(11):3979-3993. PubMed ID: 36897569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Simulation and Experimental Validation of Liquid Metal Droplet Formation in a Co-Flowing Capillary Microfluidic Device.
    Hu Q; Jiang T; Jiang H
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32033467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detaching droplets in immiscible fluids from a solid substrate with the help of electrowetting.
    Hong J; Lee SJ
    Lab Chip; 2015 Feb; 15(3):900-7. PubMed ID: 25500988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet impact of blood and blood simulants on a solid surface: Effect of the deformability of red blood cells and the elasticity of plasma.
    Yokoyama Y; Tanaka A; Tagawa Y
    Forensic Sci Int; 2022 Feb; 331():111138. PubMed ID: 34906891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmotic flow in a water column surrounded by an immiscible liquid.
    Movahed S; Khani S; Wen JZ; Li D
    J Colloid Interface Sci; 2012 Apr; 372(1):207-11. PubMed ID: 22336326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of droplets on immiscible liquid films.
    Che Z; Matar OK
    Soft Matter; 2018 Feb; 14(9):1540-1551. PubMed ID: 29350232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible on-chip droplet generation, switching and splitting via controllable hydrodynamics.
    Zhang K; Xing F; Liu J; Xie Z
    Anal Chim Acta; 2022 Oct; 1229():340363. PubMed ID: 36156234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of Droplet Generation in a Microfluidic Flow-Focusing Junction for Droplet Size Control.
    Ibrahim AM; Padovani JI; Howe RT; Anis YH
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34063839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous splitting of aqueous droplets at the interface of co-flowing immiscible oil streams in a microchannel.
    Jayaprakash KS; Sen AK
    Soft Matter; 2018 Jan; 14(5):725-733. PubMed ID: 29349475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridge evolution during the coalescence of immiscible droplets.
    Xu H; Wang T; Che Z
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):869-877. PubMed ID: 35963173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the pre-impact shape of an oil droplet on the post-impact flow dynamics at air-water interface.
    Chaudhuri J; Mandal TK; Bandyopadhyay D
    Soft Matter; 2022 Jun; 18(21):4102-4117. PubMed ID: 35579045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Simulation and Experimental Verification of Droplet Generation in Microfluidic Digital PCR Chip.
    Meng X; Yu Y; Jin G
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33917077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral motion of a droplet impacting on a wettability-patterned surface: numerical and theoretical studies.
    Zhang T; Wu J; Lin X
    Soft Matter; 2021 Jan; 17(3):724-737. PubMed ID: 33220671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coalescence-induced droplet detachment on low-adhesion surfaces: A three-phase system study.
    Moradi M; Rahimian MH; Chini SF
    Phys Rev E; 2019 Jun; 99(6-1):063102. PubMed ID: 31330640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ observation of phase separation dynamics for immiscible aqueous solution within ultrasonic field.
    Zhang Y; Wu W; Wang J; Zhai W; Wei B
    Ultrason Sonochem; 2023 Nov; 100():106634. PubMed ID: 37820413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow.
    Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces.
    Baek S; Moon HS; Kim W; Jeon S; Yong K
    Nanoscale; 2018 Sep; 10(37):17842-17851. PubMed ID: 30221273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.