These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 37241609)
1. Ultra-Broadband Solar Absorber and High-Efficiency Thermal Emitter from UV to Mid-Infrared Spectrum. Wu F; Shi P; Yi Z; Li H; Yi Y Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241609 [TBL] [Abstract][Full Text] [Related]
2. Ultra-Wideband High-Efficiency Solar Absorber and Thermal Emitter Based on Semiconductor InAs Microstructures. Zhu Y; Cai P; Zhang W; Meng T; Tang Y; Yi Z; Wei K; Li G; Tang B; Yi Y Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630133 [TBL] [Abstract][Full Text] [Related]
3. Broadband Solar Absorber and Thermal Emitter Based on Single-Layer Molybdenum Disulfide. Liu W; Wu F; Yi Z; Tang Y; Yi Y; Wu P; Zeng Q Molecules; 2024 Sep; 29(18):. PubMed ID: 39339508 [TBL] [Abstract][Full Text] [Related]
4. Multilayer stacked ultra-wideband perfect solar absorber and thermal emitter based on SiO Chen P; Song Q; Ma C; Yi Z; Bian L; Cheng S; Hao Z; Sun T; Wu P; Zeng Q Dalton Trans; 2024 Jul; 53(29):12098-12106. PubMed ID: 38973455 [TBL] [Abstract][Full Text] [Related]
5. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared. Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120 [TBL] [Abstract][Full Text] [Related]
6. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals. Li H; Niu J; Zhang C; Niu G; Ye X; Xie C Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32204359 [TBL] [Abstract][Full Text] [Related]
7. Solar energy broadband capturing by metamaterial absorber based on titanium metal. Zhu X; Wang B J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38647307 [TBL] [Abstract][Full Text] [Related]
8. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array. Yi Z; Li J; Lin J; Qin F; Chen X; Yao W; Liu Z; Cheng S; Wu P; Li H Nanoscale; 2020 Nov; 12(45):23077-23083. PubMed ID: 33179661 [TBL] [Abstract][Full Text] [Related]
9. Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion. Qi B; Chen W; Niu T; Mei Z Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443702 [TBL] [Abstract][Full Text] [Related]
10. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953 [TBL] [Abstract][Full Text] [Related]
11. A wide angle broadband solar absorber with a horizontal multi-cylinder structure based on an MXene material. Li Y; Chen F; Yang W; Ke S Phys Chem Chem Phys; 2024 Jul; 26(30):20619-20628. PubMed ID: 39037437 [TBL] [Abstract][Full Text] [Related]
12. Ultra-Wideband and Wide-Angle Perfect Solar Energy Absorber Based on Titanium and Silicon Dioxide Colloidal Nanoarray Structure. Wu P; Wei K; Xu D; Chen M; Zeng Y; Jian R Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443871 [TBL] [Abstract][Full Text] [Related]
13. Broadband and Efficient Metamaterial Absorber Design Based on Gold-MgF2-Tungsten Hybrid Structure for Solar Thermal Application. Armghan A; Alsharari M; Aliqab K Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241689 [TBL] [Abstract][Full Text] [Related]
14. Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy. Song D; Zhang K; Qian M; Liu Y; Wu X; Yu K Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616001 [TBL] [Abstract][Full Text] [Related]
15. A high-performance ultra-wideband metasurface absorber and thermal emitter for solar energy harvesting and thermal applications. Armghan A; Alsharari M; Baqir MA; Saqlain M; Aliqab K Phys Chem Chem Phys; 2024 Oct; 26(39):25469-25479. PubMed ID: 39324235 [TBL] [Abstract][Full Text] [Related]
16. Reverse design of metamaterial absorbers based on an equivalent circuit. Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852 [TBL] [Abstract][Full Text] [Related]
17. Highly efficient, perfect, large angular and ultrawideband solar energy absorber for UV to MIR range. Patel SK; Udayakumar AK; Mahendran G; Vasudevan B; Surve J; Parmar J Sci Rep; 2022 Oct; 12(1):18044. PubMed ID: 36302877 [TBL] [Abstract][Full Text] [Related]
18. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Zhou F; Qin F; Yi Z; Yao W; Liu Z; Wu X; Wu P Phys Chem Chem Phys; 2021 Aug; 23(31):17041-17048. PubMed ID: 34342321 [TBL] [Abstract][Full Text] [Related]
19. Development and Fabrication of a Multi-Layer Planar Solar Light Absorber Achieving High Absorptivity and Ultra-Wideband Response from Visible Light to Infrared. Yang CF; Wang CH; Ke PX; Meen TH; Lai KK Nanomaterials (Basel); 2024 May; 14(11):. PubMed ID: 38869555 [TBL] [Abstract][Full Text] [Related]
20. Ultra-Broadband, Omnidirectional, High-Efficiency Metamaterial Absorber for Capturing Solar Energy. Wu JH; Meng YL; Li Y; Li Y; Li YS; Pan GM; Kang J; Zhan CL; Gao H; Hu B; Jin SZ Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]